Search results

Search for "cell targeting" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Better together: biomimetic nanomedicines for high performance tumor therapy

  • Imran Shair Mohammad,
  • Gizem Kursunluoglu,
  • Anup Kumar Patel,
  • Hafiz Muhammad Ishaq,
  • Cansu Umran Tunc,
  • Dilek Kanarya,
  • Mubashar Rehman,
  • Omer Aydin and
  • Yin Lifang

Beilstein J. Nanotechnol. 2025, 16, 1246–1276, doi:10.3762/bjnano.16.92

Graphical Abstract
  • /adjuvant delivery and tumor antigen-specific T-cell targeting strategies. It also summarizes the characteristics of biomimetic drug delivery nanocarriers designed from different cell types, their modification with specific ligands for precise and enhanced tumor targeting and TME responsiveness. Finally, by
  • and kill cancer by cytotoxic agents loaded in the nanoparticles. Unlike T cells, the T lymphocyte membrane-coated nanoparticles are resistant to immunosuppressive and apoptotic signaling [40]. In recent years, the applications of T cell-mediated cancer cell targeting have expanded. One example is
  • ]. CCM-coated poly(β-amino ester) was successfully applied for siRNA delivery, resulting in cancer cell targeting, inhibition of PKL1 gene expression, and the induction of apoptosis in cancer cells. Besides the membrane coating strategy, a DNA nanotechnology-based nanosystem, which is inspired by
PDF
Album
Review
Published 05 Aug 2025

A calix[4]arene-based supramolecular nanoassembly targeting cancer cells and triggering the release of nitric oxide with green light

  • Cristina Parisi,
  • Loredana Ferreri,
  • Tassia J. Martins,
  • Francesca Laneri,
  • Samantha Sollima,
  • Antonina Azzolina,
  • Antonella Cusimano,
  • Nicola D’Antona,
  • Grazia M. L. Consoli and
  • Salvatore Sortino

Beilstein J. Nanotechnol. 2025, 16, 1003–1013, doi:10.3762/bjnano.16.75

Graphical Abstract
  • activatable with blue light, and encouraging the NO release with the more biocompatible green light probably by an intra-cage photoinduced electron transfer. Keywords: calixarenes; cell targeting; fluorescence; light; nitric oxide; Introduction Calix[n]arenes are a family of polyphenolic macrocycles
  • of an amphiphilic calix[n]arene covalently integrating specific targeting ligands showed improved cell targeting capability [11]. Besides, nanoassemblies of calix[4]arene derivatives proved to be also very suited host supramolecular nanoreactors to amplify the photochemical performances of otherwise
  • reaction between suitable photosensitizers and the NOPD co-encapsulated within different types of biocompatible host systems. Inspired by this work, we thought that a calixarene covalently integrating specific cell-targeting ligands and a suitable chromo-fluorogenic unit can impose the whole structure
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2025

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • then collected by 30 min of centrifugation at 12,000 rpm. Another set of particles, such as F127@PLGA/Cou-6, and F127-folate@PLGA/Cou-6, were used in the cell targeting experiment, which were prepared under similar conditions. Characterization of F127-folate@PLGA/CHL/IR780 nanoparticles Dynamic light
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • ]. Although it is still a challenge to design SNALPs for efficient tumor cell targeting, the design of lung-, spleen- and liver-specific mRNA LNPs for selective organ targeting (SORT) is evidence that there is a light at the end of the tunnel and a solution for nucleic acid delivery problems for cancer and
PDF
Album
Review
Published 22 Feb 2023

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
PDF
Album
Review
Published 29 Apr 2021

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • for cell targeting in tumoral cell lines that overexpress nucleolin [40]. The use of targeting moieties provides not only the capacity to the nanoparticles to be selectively engulfed by tumoral cells. It also allows for the localization of the nanocarriers in specific intracellular localizations or
  • mitochondria membrane by electrostatic interactions. The nucleus contains practically all the genetic information (except for the mitochondrial DNA) and is of paramount importance for the correct function of the entire cell. Targeting nuclei has received huge attention regarding the delivery of cytotoxic
PDF
Album
Review
Published 14 Jan 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • @CdSe/ZnS can be used in cell imaging studies, after conjugation with FA, we performed a MCF-7 breast cancer cell targeting imaging study, and the results as shown in Figure 8. Robust cellular uptake could be obtained from the CdSe/ZnS@FA and GNR@CdSe/ZnS@FA treated samples. The obvious luminescence and
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

  • Tudor Braniste,
  • Ion Tiginyanu,
  • Tibor Horvath,
  • Simion Raevschi,
  • Serghei Cebotari,
  • Marco Lux,
  • Axel Haverich and
  • Andres Hilfiker

Beilstein J. Nanotechnol. 2016, 7, 1330–1337, doi:10.3762/bjnano.7.124

Graphical Abstract
  • ]. Cell targeting with nanoparticles could be applied in diseases affecting vascular structures. In such a case, nanoparticles could be injected in a highly vascularized area, like in some eye diseases that affect the posterior eye, where intraocular injection procedures could harm healthy tissue and
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2016

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • protein mediated cell-targeting suffers from corona formation under physiological conditions. Future approaches need to work around these effects and a detailed mechanistic knowledge is needed in order to do so. In a different approach, Treuel, Nienhaus and co-workers [4] studied the uptake of DHLA coated
PDF
Album
Review
Published 30 Mar 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • was performed by using a vibrating sample magnetometer (VSM). The saturation magnetization of citric-acid-coated Fe3O4 NPs was found to be 40.97 emu/g, which was reduced to 9.90 emu/g after silica coating and was further decreased to 2.26 emu/g after addition of the CdTe QDs. For cell targeting
PDF
Album
Review
Published 24 Feb 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • positive). Gold nanoparticles exhibit strong light scattering and absorption at their resonance wavelength due to their plasmonic properties [1][2]. Thus, these particles are used for optical imaging approaches [3][4]. Moreover, applications as contrast media for CT [5][6] and for selective cell targeting
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • (Figure 2A–C) or polymer-coated SPIOs (Figure 2D,E). These studies confirmed Kupffer cell targeting of nanocrystals transported by lipid micelles (Figure 2A). Higher magnification revealed the subcellular transport and storage of numerous SPIOs within lipid droplet-like structures (Figure 2B,C) suggesting
PDF
Album
Full Research Paper
Published 02 Sep 2014

Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer

  • Amanee D Salaam,
  • Patrick Hwang,
  • Roberus McIntosh,
  • Hadiyah N Green,
  • Ho-Wook Jun and
  • Derrick Dean

Beilstein J. Nanotechnol. 2014, 5, 937–945, doi:10.3762/bjnano.5.107

Graphical Abstract
  • /proliferate for 24 h prior to exposure to 32h treatment regimens. Evaluation of ND-DGEA targeting The effects of DGEA peptide on cell targeting were investigated to determine the optimal parameters for treatment regimens. The cells were exposed to 10 µg/mL ND-DGEA for 32 h. Then, cells were washed three times
PDF
Album
Full Research Paper
Published 01 Jul 2014
Other Beilstein-Institut Open Science Activities