Search results

Search for "charging" in Full Text gives 213 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles

  • Shoronia N. Cross,
  • Katalin V. Korpany,
  • Hanine Zakaria and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2025, 16, 1504–1521, doi:10.3762/bjnano.16.106

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2025

Synthesis of biowaste-derived carbon-dot-mediated silver nanoparticles and the evaluation of electrochemical properties for supercapacitor electrodes

  • Navya Kumari Tenkayala,
  • Chandan Kumar Maity,
  • Md Moniruzzaman and
  • Subramani Devaraju

Beilstein J. Nanotechnol. 2025, 16, 933–943, doi:10.3762/bjnano.16.71

Graphical Abstract
  • . Electrochemical properties of the synthesized electrode Three-electrode analysis Firstly, utilizing a three-electrode configuration in an aqueous electrolyte (1 M aqueous KCl), the electrochemical properties (capacitive characteristics, charge transportation, and charging/discharging) of PG-CDs-AgNPs were
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2025

Focused ion beam-induced platinum deposition with a low-temperature cesium ion source

  • Thomas Henning Loeber,
  • Bert Laegel,
  • Meltem Sezen,
  • Feray Bakan Misirlioglu,
  • Edgar J. D. Vredenbregt and
  • Yang Li

Beilstein J. Nanotechnol. 2025, 16, 910–920, doi:10.3762/bjnano.16.69

Graphical Abstract
  • glass and not Si, charging effects can occur. In addition, the SE yields of amorphous SiO2 and crystalline Si are different. Therefore the actual deposition rates and the estimated and real layer thickness differ. Overall, they vary from 300 to 1200 nm. Although in theory, the area of the cross section
PDF
Album
Full Research Paper
Published 16 Jun 2025

Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering

  • Shankar Dutt,
  • Rudradeep Chakraborty,
  • Christian Notthoff,
  • Pablo Mota-Santiago,
  • Christina Trautmann and
  • Patrick Kluth

Beilstein J. Nanotechnol. 2025, 16, 899–909, doi:10.3762/bjnano.16.68

Graphical Abstract
  • values result from challenges in precisely defining nanopore boundaries due to charging effects during SEM imaging (see Figure 1). To address this, four cross-sectional measurements were taken across each pore and averaged. The standard deviation of these measurements provides the reported uncertainty
PDF
Album
Full Research Paper
Published 12 Jun 2025

Synchrotron X-ray photoelectron spectroscopy study of sodium adsorption on vertically arranged MoS2 layers coated with pyrolytic carbon

  • Alexander V. Okotrub,
  • Anastasiya D. Fedorenko,
  • Anna A. Makarova,
  • Veronica S. Sulyaeva,
  • Yuliya V. Fedoseeva and
  • Lyubov G. Bulusheva

Beilstein J. Nanotechnol. 2025, 16, 847–859, doi:10.3762/bjnano.16.64

Graphical Abstract
  • on the surface of the MoS2 film annealed in a hydrogen atmosphere (Figure 1c). An attempt to measure the cross section of this film did not yield a contrast image because of the charging effect. Therefore, to estimate the thickness of the studied film, we used a thicker MoS2 film synthesized with a
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • various shapes and dimensions of several dozens of micrometers. The surfaces of the grains are notably rough and torn, and during the measurement displayed high susceptibility to electron beam charging, which is a characteristic of organic compounds. Consequently, these grains were recognized as
PDF
Album
Full Research Paper
Published 02 Jun 2025

Thickness dependent oxidation in CrCl3: a scanning X-ray photoemission and Kelvin probe microscopies study

  • Shafaq Kazim,
  • Rahul Parmar,
  • Maryam Azizinia,
  • Matteo Amati,
  • Muhammad Rauf,
  • Andrea Di Cicco,
  • Seyed Javid Rezvani,
  • Dario Mastrippolito,
  • Luca Ottaviano,
  • Tomasz Klimczuk,
  • Luca Gregoratti and
  • Roberto Gunnella

Beilstein J. Nanotechnol. 2025, 16, 749–761, doi:10.3762/bjnano.16.58

Graphical Abstract
  • known that 270 nm SiO2/Si substrates provide the highest optical contrast (O.C.) value for a single layer or few layers of CrCl3 [2][11]. Because of the insulating behavior of 270 nm SiO2 and to avoid surface charging, we utilized Si(001) wafers with a 1 nm layer of SiO2 and ITO films (190 nm) on glass
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • surface chemical changes, local charging, and space-charge effects. To partially mitigate this effects, strong efforts must be spent in the development of new photoelectron detection systems capable of collecting the majority of electrons, currently wasted due to the limited acceptance angles of
PDF
Album
Review
Published 23 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • on the perovskite side than ETL-extracted negative charges, which leads to a positive charging of the perovskite. On the contrary, when BCF is added in the spiro-OMeTAD precursor solution, the HTL/perovskite interface extracts charges more efficiently and becomes the dominant junction relative to the
  • one on the ETL side. A previous study of our group [15] has associated the charging within the perovskite absorber under open-circuit conditions with unbalanced recombination rates of electrons and holes at its two interfaces. More specifically, a positive charging of the perovskite was connected with
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • prepared on an ultrathin carbon support film spanning a lacey carbon membrane (Figure 2c). The deposit appears smeared because of drift caused by charging effects during the deposition process. High-resolution STEM imaging (Figure 2d,e) revealed a granular nanostructure with nanograins of around 2 nm in
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • charging effects. The Cr(C6H6)2 precursor was preheated to 80 °C for at least 30 min. The GIS nozzle with an inner diameter of 0.5 mm was tilted at 30° and positioned 100 µm above the substrate and 100 μm away from the beam center. The Me3CpPtMe precursor was preheated to 45 °C, and the GIS was tilted to
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • lower region of the microcavity and an additional eight bilayers in the upper area. The bottom DBR was coated with LFO using the spin-coating technique. Ultrafast transient-absorption spectroscopy was used to measure charging dynamics by exciting the microcavity with a pump pulse and observing the
  • evolution of stored energy with a probe pulse. The study demonstrated superextensive charging dynamics, where the rise time decreases as the stored energy density increases. The DBRs in the structure play a crucial role in the experimental setup. Firstly, allowing for the confinement of the optical field
  • and driving coherent interactions with the organic semiconductor molecules. Secondly, enabling the measurement of the evolution of stored energy and the differential reflectivity induced by the pump pulse, which is essential for monitoring the charging dynamics at a femtosecond resolution. The
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • consistent with the reported resistivity of the FEBID material [24]. The resistivity was also measured across the milled structure before nanowire deposition (Figure 8a) and after FIB removal (Figure 8b). The results obtained show that in both cases the measured current was mostly related to the charging and
  • slit in the RoI and (b) after removal of the measured nanowire. In both cases the resistance is above 100 GΩ, and the I–V curves represent the capacitance charging current. Funding This work was conducted within the National Science Centre, Poland NCN OPUS grant – “Nanometrology of Nottingham cooling
PDF
Album
Full Research Paper
Published 23 Oct 2024

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • charging the flakes through bringing the tip into contact while applying an external bias voltage to the tip [78] (see Supporting Information File 1, section SI.3 for further details). Following the charging process, without activating the KPFM feedback (Figure 2a), there is a noticeable increase in the
  • number of layers, and measurements without KPFM might give an erroneous layer count. Moreover, a line profile along one and two layers (Figure 2c) reveals that, after charging, the height increase of the first layer with respect to the substrate is much more pronounced than the increase of the second
  • layer with respect to the first one, which remains essentially unchanged. Additional charging experiments (not shown) reveal that the measured flake height depends on the charging state; this effect is magnified as the amount of charge is increased, regardless of its sign. We could associate this
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • depth were drawn on the surface using a FIB-SEM. Although the lines could be clearly observed, the nanostructures could not be resolved in FIB or SEM imaging modes because of poor contrast for both and the observed sample charging during SEM imaging (Supporting Information File 1, Figure S4). Because of
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • , which favored the charging process of the metallic electrode. These were used to facilitate the transport of charge carriers between the electrode and the layer, which can become problematic because of limitations in the conductivity of organic materials. The changes in roughness presented from the AFM
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • outside of the disk are probably caused by the charging of the SiN membrane. Supporting Information Supporting Information File 16: Video of Lorentz TEM measurements. Acknowledgements The authors gratefully acknowledge the possibility of performing parts of the work at ER-C-1, HNF, PGI-4/JCNS-2, PGI-5
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • charging corresponds to a positive Vdc change). Actually, there are many ways to perform the signal demodulation. Amplitude heterodyne KPFM, introduced in 2012 by Sugawara et al. [17], is a very elegant approach. It combines the advantages of frequency-modulated KPFM (FM-KPFM) and amplitude-modulated KPFM
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • extracted from a 65 decitex yarn. Fibers were mounted onto cardstock specimen holders, fixed with adhesive at two points approximately 15 mm apart from one another, and conductively coated with a gold–palladium mixture to mitigate sample drift, for example, due to sample charging effects inside the FIB
PDF
Album
Full Research Paper
Published 05 Oct 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • signals from secondary electrons and backscattered electrons (BSE) to minimize charging effects due to the bad electrical conductivity of the SiO2 layer. In addition, the composition information related to the Z-contrast was obtained by the BSE detector because the areas rich in elements with higher
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • by the phase transition from a hexagonal structure to a monoclinic structure, which occurs during cathode charging at a potential of approximately 4.2 V [5][6][7][8][9]. A decrease in capacity (approx. 50%) is observed during the cycling charging–discharging processes, caused by the dissolution of
PDF
Album
Full Research Paper
Published 07 Dec 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • humidification and dehumidification processes. (n) The equivalent circuit diagram of the PEDOT:PSS/PVDF double-layer generator charging a capacitor to power a LED. Figure 10k–n were reprinted from [92]. This article was published in Sensors and Actuators B: Chemical, vol. 255, by G. Wang; H. Xia; X.-C. Sun; C
PDF
Album
Review
Published 25 Oct 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • from the molecule, therefore the measured spectrum is not representative of the neutral but of the positively charged molecule. Similarly, when unoccupied states are probed, an electron is injected in the molecule and the system is negatively charged. For isolated C60 molecules, the charging energy is
  • Us = Es − γ = 3.35 eV. In [57], Esper et al. measured γ by performing PES on C60 films highly doped with K. In this case, the LUMO orbitals were completely filled, therefore the charging energy was the same when HOMO and LUMO states were probed and the difference between the LUMO and HOMO energies
  • term) with respect to that of the isolated molecule. In the case of the (111) surface of face-centered cubic bulk C60, the measured electronic gap is Eb = 3.50 eV [23]. Therefore, the charging energy is Ub = 1.90 eV. Defining ΔU as the variation of the Coulomb energy with respect to isolated C60, in
PDF
Album
Full Research Paper
Published 30 Aug 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • of the other three films, as SEM operation quickly leads to surface charging effects. Optoelectronic properties UV–vis spectra of the deposited graphene films at different centrifugation rates, redispersed in specified volumes of NMP, are given in Figure 5. The optical transmission spectra are
PDF
Album
Full Research Paper
Published 18 Jul 2022
Other Beilstein-Institut Open Science Activities