Search results

Search for "energy storage" in Full Text gives 152 result(s) in Beilstein Journal of Nanotechnology.

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • ; quantitative force spectroscopy; scanning capacitance force microscopy; Introduction Technological progress in fields including electronics, energy storage, photonics, and biomedical devices would not have been possible without the development of new materials. Progress in these areas requires a detailed
  • , in microelectronic devices, high-κ dielectric materials such as HfO2 and ZrO2 are critical for minimizing leakage currents and enhancing gate capacitance in transistors [7][8][9]. In energy storage systems, the dielectric constants of polymer–ceramic composites determine the efficiency and
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • combustion mode where the fuel and oxidizer are thoroughly mixed before ignition. LPG is a cheap industrial material used as a carbon source to produce carbon nanomaterials [6]. The application of CNFs includes, but is not limited to, energy storage in batteries and supercapacitors, electronics, drug
PDF
Album
Full Research Paper
Published 23 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • Usha Rani Kafi Devi Divya Gupta Sanjeev Aggarwal Ion Beam Centre, Department of Physics, Kurukshetra University, Kurukshetra-136119, India 10.3762/bjnano.16.38 Abstract Molybdenum (Mo) thin films have extensive applications in energy storage devices and photovoltaic solar cells because of their
  • resistivity of Mo thin films makes them desirable for integrated circuits, where they contribute to the efficient flow of electrical current [3]. Furthermore, their optical properties make them well suited for a use as a protective coating in energy storage and electronic devices [4][5]. Mo films deposited on
  • films, enhancing their performance in applications such as photovoltaic devices, energy storage, and integrated circuits. (A) Nitrogen ion trajectories, (B) distribution of ions, (C) distribution of losses due to ionization, and (D) vacancy distribution in a Mo thin film. GXRD patterns of as-deposited
PDF
Album
Full Research Paper
Published 01 Apr 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • medicine for gold [9][29], strengthened ceramics and steels for high-temperature applications for Y2O3 [45][46][47], and catalysis and energy storage for HEAs [48][49]. The produced NPs are compared with those obtained with Gaussian beams. The evolution of the PLAL-generated cavitation bubble dynamics was
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study

  • Kamal Kumar,
  • Nora H. de Leeuw,
  • Jost Adam and
  • Abhishek Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 1440–1452, doi:10.3762/bjnano.15.116

Graphical Abstract
  • unchanged under the influence of mechanical strain, preserving its initial characteristic of having a direct bandgap. This behavior offers opportunities for these materials in various vital applications in photodetectors, solar cells, LEDs, pressure and strain sensors, energy storage, and quantum computing
  • that remains unchanged under mechanical strain. This outcome offers various critical applications of ψ-graphane in photodetectors, solar cells, LEDs, pressure and strain sensors, energy storage, and quantum computing. The mechanical strain tolerance of pristine and fully hydrogenated ψ-graphene is
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • electronic/optoelectronic devices, energy storage/generation systems, and renewable energy conversion devices with high performance and low-power consumption [1][2][3]. In comparison to semiconductors, ZnO has attracted much more attention. This is due to ZnO having outstanding semiconductor behaviours in
PDF
Album
Full Research Paper
Published 11 Nov 2024

Simultaneous electrochemical determination of uric acid and hypoxanthine at a TiO2/graphene quantum dot-modified electrode

  • Vu Ngoc Hoang,
  • Dang Thi Ngoc Hoa,
  • Nguyen Quang Man,
  • Le Vu Truong Son,
  • Le Van Thanh Son,
  • Vo Thang Nguyen,
  • Le Thi Hong Phong,
  • Ly Hoang Diem,
  • Kieu Chan Ly,
  • Ho Sy Thang and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 719–732, doi:10.3762/bjnano.15.60

Graphical Abstract
  • through edge effects. Edge-functionalized GQDs have oxygen-containing functional groups such as hydroxy, carboxyl, carbonyl, and epoxy groups, which can conjugate to various biological/organic/inorganic molecules such as proteins, antibodies, or metal ions [12]. The capability of electron transfer/energy
  • storage derived from their conjugate structure makes them effectively utilizable over the full light spectrum [13][14]. GQDs can be prepared through solvothermal/hydrothermal processes or carbonization from suitable organic molecules (polymers or biomass) [15]. Biomass waste (e.g., agricultural residues
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface

  • Niklas Humberg,
  • Lukas Grönwoldt and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2024, 15, 556–568, doi:10.3762/bjnano.15.48

Graphical Abstract
  • . They allow for electron transport along the long axes of the 1D aggregates, while a confinement effect is present along their short axes. Hence, they are considered as building blocks for new generations of devices for computing, photovoltaics, thermoelectrics, and energy storage [5][6][7]. Furthermore
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Investigating structural and electronic properties of neutral zinc clusters: a G0W0 and G0W0Г0(1) benchmark

  • Sunila Bakhsh,
  • Muhammad Khalid,
  • Sameen Aslam,
  • Muhammad Sohail,
  • Muhammad Aamir Iqbal,
  • Mujtaba Ikram and
  • Kareem Morsy

Beilstein J. Nanotechnol. 2024, 15, 310–316, doi:10.3762/bjnano.15.28

Graphical Abstract
  • clusters have been reported in the literature. Our G0W0 calculations will provide a benchmark to help accelerate the research on clusters and creating materials with high stability that can be used for advanced energy storage applications [17][18][19]. In this work, we have employed the generalized
PDF
Album
Full Research Paper
Published 15 Mar 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • G' value of DPNR/GO could be explained by thin and large surface GO layers. The GO sheet could not withstand large shearing force, causing the rubber particles to slip. The high G' value of DPNR/GO-VTES(a) and DPNR/GO-VTES(b) may be due to hard silica particles, which may contribute to higher energy
  • storage for composite materials. The G' values seemed to depend on the silica content; the higher the silica content, the higher the storage modulus. The dependence of loss modulus (G'') on frequency for DPNR, DPNR/GO, DPNR/GO-VTES(a), and DPNR/GO-VTES(b) exhibited a little difference as shown in Figure
PDF
Album
Full Research Paper
Published 05 Feb 2024

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • materials is one of the most relevant fields in materials science. Layered double hydroxides (LDHs), a versatile class of anionic clays, exhibit great potential in photocatalysis, energy storage and conversion, and environmental applications. However, its implementation in real-life devices requires the
  • ]. These materials play a key role both from a fundamental point of view and regarding potential applications in electronic devices, drug delivery, and energy storage and conversion, to name a few [5][6][7][8]. Layered materials range from monoelementals (i.e., graphene, silicene, germanene, or pnictogens
  • < x < 0.33). An− symbolizes a constituent ranging from (in)organic anions to macromolecules, and Sv stands for solvent molecules. This general composition leads to a plethora of highly tunable systems [12][13][14][15][16] with relevance in environmental applications [17], photocatalysis [18], energy
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • solar and wind energy [3]. However, high-power, high-energy, and long-lasting energy storage systems are necessary to utilize these energy resources effectively [4]. Moreover, to reduce greenhouse gas emissions, various governments have committed themselves to develop strategies for increasing the
  • number of electric vehicles (EVs) [5][6]. The most important component of EVs are suitable energy storage systems, the further development of which will be key to a more widespread use of this kind of transportation [7]. Commercialized first by Sony company, lithium-ion batteries (LIBs) and related
  • systems have become the most popular energy storage systems, with applications from mobile devices to EVs and grid-scale storage [8][9]. However, the low specific theoretical capacity of graphite limits the energy density of the commercial LIBs [10][11][12][13]. Germanium, as a lithium alloying material
PDF
Album
Full Research Paper
Published 26 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • CNT functionalization for energy storage, nanosensor, and nanocomposite applications, where diameter and crystallinity are influential properties that govern the overall performance of the components. Keywords: carbon nanotubes; crystallinity; flame synthesis; morphology; one-dimensional flame
PDF
Album
Full Research Paper
Published 21 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • in MOFs can either be quenched or enhanced. Due to their exceptional characteristics, MOFs have found usage in a variety of fields, including sensors, gas adsorption, energy storage, drug delivery, catalysis, water treatment, and bio-medical imaging [89][90][91][92][93][94][95][96][97][98][99][100
PDF
Album
Review
Published 01 Jun 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • tunability of optothermal properties and enhanced stability, these nanostructures show a wide range of applications in optical sensors, steam generation, water desalination, thermal energy storage, and biomedical applications such as photothermal (PT) therapy. The PT effect, that is, the conversion of
  • , nanomaterials are used in conjunction with a phase-change material for energy storage applications, and when plasmonic nanoparticles are integrated into a solid phase-change material (n-PCM), the energy balance equation is be given by [94]: ΔHfus is the heat of fusion, ρs is the density of solid, ϕ is the
PDF
Album
Review
Published 27 Mar 2023

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • discussion below), (ii) the substitution of Co ions with other metal ions, such as Mg, Al, Fe, Ni, Mn, V [10][11][12][13][14][15][16][17][18][19][20][21][22], or (iii) the surface modification by carbon, metal, or oxide coatings [15][16]. Nanomaterials are preferred for the use in energy storage and
PDF
Album
Full Research Paper
Published 07 Dec 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • inorganic films used extensively in photovoltaics, (nano)electronics, energy storage and catalysis [5][6][7][8]. Similarly to ALD, MLD is based on sequential self-limiting reactions of readily vaporized inorganic precursors but the second reactant is a highly volatile organic species. Thus, in contrast to
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • of corrosion, sensing, solar cells, energy storage devices, and bioelectric interfaces [3][4][5][6][7][8]. Since its first application in 1991 [2], there have been significant developments in the field of KPFM [6][9][10] with significant advances in both temporal [11][12][13][14] and spatial
PDF
Full Research Paper
Published 12 Sep 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • , which are important for increase the density of active sites for catalysis and energy storage. However, they are too narrow for the transport of small molecules, hindering fast mass transport. Forming additional porous textures in monocrystalline coordination polymers can perfectly solve this problem by
  • composite in energy storage [129]. The connected core and shell frameworks presented a Na+ ion intercalation behavior governed by the outermost layer. Confined assembly of monocrystalline coordination polymers Monodispersed monocrystalline coordination polymers are building blocks for superstructures
PDF
Album
Review
Published 12 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • detection limit and long-term stability at room temperature. Graphene oxide (GO), consisting of a monolayer of sp2-hybridized carbon atom network, has already been used in electrocatalysis, nanoelectronics, bionanosensors, and sustainable energy storage systems due to its larger active surface area
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • antistatically equipped clothing, capacitors, solar cells, energy storage devices, and polymer light-emitting diodes [1]. One electrical property of PANI are the π-conjugated bonds in the benzene rings. The key to this is the NH group, which can be doped. These nitrogen units are the key element of the chain
PDF
Album
Full Research Paper
Published 26 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia 10.3762/bjnano.13.61 Abstract The strategic design of the cathode is a critical feature for high-performance and long-lasting reversibility of an energy storage system. In particular, the round
  • (LOBs) have received great attention as a future energy storage solution since they offer a tremendously high energy density compared to commercial lithium-ion batteries (LIBs) [1][2]. An aprotic LOB is composed of a porous air cathode and a metallic Li anode, which are separated by a porous separator
  • metal ions are zinc and cobalt, respectively) have been extensively studied for various energy storage applications [35][36]. From a structural viewpoint, ZIF-8-derived carbon materials have a large specific surface area with a well-defined microporous structure and a high N content [37]. Meanwhile, ZIF
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • break van der Waals forces, leading to exfoliation [20]. Electrochemical exfoliation offers an alternative to LPE that is both scalable and widely available. It has been used to make graphene for various applications, including energy storage [21][22]. Both ultrasound-assisted LPE and electrochemical
PDF
Album
Full Research Paper
Published 18 Jul 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • ; metal-organic framework; proton conductivity; Introduction Recent achievements in the synthesis of advanced functional materials with tailored, structure-related physical properties have stimulated the development of new concepts and devices for energy storage [1][2] and energy conversion [3][4]. Among
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • ]. Given these structural properties, MOFs are widely applied to gas storage [18], gas/liquid separation [18][19][20], energy storage [21][22][23], sensing [24], catalysis [25], electrochemistry [26], and bio-related fields [27]. Zeolitic imidazolate frameworks (ZIFs), a subclass of MOFs, comprise
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022
Other Beilstein-Institut Open Science Activities