Search results

Search for "low temperature" in Full Text gives 370 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Focused ion beam-induced platinum deposition with a low-temperature cesium ion source

  • Thomas Henning Loeber,
  • Bert Laegel,
  • Meltem Sezen,
  • Feray Bakan Misirlioglu,
  • Edgar J. D. Vredenbregt and
  • Yang Li

Beilstein J. Nanotechnol. 2025, 16, 910–920, doi:10.3762/bjnano.16.69

Graphical Abstract
  • surface is a frequently used process of focused ion beam (FIB) systems. Here, we report on the deposition of platinum (Pt) with a new kind of cesium (Cs) FIB, in which the cesium ions are produced by a low-temperature ion source. Platinum was deposited at different acceleration voltages and ion beam
PDF
Album
Full Research Paper
Published 16 Jun 2025

Synchrotron X-ray photoelectron spectroscopy study of sodium adsorption on vertically arranged MoS2 layers coated with pyrolytic carbon

  • Alexander V. Okotrub,
  • Anastasiya D. Fedorenko,
  • Anna A. Makarova,
  • Veronica S. Sulyaeva,
  • Yuliya V. Fedoseeva and
  • Lyubov G. Bulusheva

Beilstein J. Nanotechnol. 2025, 16, 847–859, doi:10.3762/bjnano.16.64

Graphical Abstract
  • /Si substrates in a two-zone quartz reactor. The substrate was placed in the high-temperature zone and annealed there at 423 K for 30 min in an argon flow of 250 sccm. Then, this zone was heated to 873 K. 200 mg of sulfur powder (99.9% purity) were placed in a quartz crucible in the low-temperature
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • metal and X can be Si, Ge or Al) have gained attention because of their magneto-structural phase transition at low temperatures. As ternary alloys, these materials undergo a magnetic and structural transition from a low-temperature orthorhombic TiNiSi-type structure to a high-temperature hexagonal Ni2In
  • the Al-based CCA is more gradual, possibly because of different multiple phases and microstructures. However, the low-temperature magnetization of the Al-based CCA (≈1 A·m2·kg−1) is much lower than that of the Ge-based CCA (≈5 A·m2·kg−1), indicating that antiferromagnetic correlations may become
  • to enhanced surface anisotropy effects that arise from the smaller particle size. However, Ms (300 K, 9 T) and Ms (5 K, 9 T) of the Al-based CCA NPs are comparable, while a lower Hc is exhibited at low temperature (5 K) compared to Ge-based CCA NPs (Table 4). This decrease in Hc can be attributed to
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • AC) performed on the undissolved sample revealed the presence of a low temperature blocking process ( ≈ 10 K), and confirmed its superparamagnetic state between 70– 250 K. X-ray photoelectron spectroscopy and Raman studies showed a varied composition of the undissolved sample in which organic
  • magnetization of the curves slightly increases, then a low temperature maximum, at TMAX ≈ 10 K, appears in the ZFC curve, while the magnetization value of the FC curve begins to more rapidly increase. The observed maximum in the ZFC relation is sharp, and this is the only singularity visible in this curve in
  • the microcapsule as a magnetic system, it is expected that the sucrose shell will prevent or significantly diminish interactions between nanoparticles, also probably modifies the surface state of the core. To understand the low-temperature magnetic state of the FS0 sample, the zero field cooled
PDF
Album
Full Research Paper
Published 02 Jun 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • they were fabricated using a low-temperature co-precipitation method. The resulting Ag@ZnO NRs had good optical properties, nanorod morphologies, and high crystallinity with no impurities. Technological advancements are leading people to use lightweight electronics and affordable sensors
  • experiments. Conclusion In conclusion, a low-temperature co-precipitation technique was utilized to yield highly crystalline nanorods of ZnO doped with Ag. A variety of techniques were employed to analyze the physical and chemical characteristics of as-synthesized Ag@ZnO NRs. The results demonstrate that the
PDF
Album
Full Research Paper
Published 26 Mar 2025

Vortex lattices of layered HTSCs at different vortex–vortex interaction potentials

  • Valerii P. Lenkov,
  • Anastasia N. Maksimova,
  • Anna N. Moroz and
  • Vladimir A. Kashurnikov

Beilstein J. Nanotechnol. 2025, 16, 362–370, doi:10.3762/bjnano.16.27

Graphical Abstract
  • discovered. Indications were also obtained that the second peak on the magnetization curve (second magnetization peak) at low temperature (less than 0.55Tc) coincides with the transition between the regimes of the flow of the vortex lattice. The measurements were also performed in a magnetic field inclined
PDF
Album
Full Research Paper
Published 13 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • blending of functional agents in the polymer solution, wet chemical methods, surface graft polymerization, and plasma treatment [160]. Low-temperature plasma offers advantages over other techniques in terms of lower energy consumption, faster processing, and minimal solvent use [161]. By appropriately
  • , wet chemical procedures, low-temperature plasma treatment, and co-electrospinning with surface-active chemicals and polymers [160]. Among these methods, low-temperature plasma treatment is particularly popular because it can modify the surface properties of the nanofibers without affecting their bulk
PDF
Album
Review
Published 26 Feb 2025

Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates

  • Norma Salvadores Farran,
  • Limin Wang,
  • Primoz Pirih and
  • Bodo D. Wilts

Beilstein J. Nanotechnol. 2025, 16, 1–10, doi:10.3762/bjnano.16.1

Graphical Abstract
  • interesting for their use as templates. The work of Galusha and colleagues demonstrated a double-imprint templating process to create a positive titania replica of beetle scales with high refractive index. This showed the effectiveness of a sol–gel process at relatively low temperature (130 °C) in replicating
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2025

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • chemical vapor deposition reactor for the growth of polycrystalline SiO2 [23]. Most of these models describe CVD reactors at low pressure and low temperature, but there are not enough models regarding CVD systems at high temperature (>800 K) and high pressure (atmospheric pressure). In this investigation
PDF
Album
Full Research Paper
Published 17 Dec 2024

Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model

  • Aram Shirinyan and
  • Yuriy Bilogorodskyy

Beilstein J. Nanotechnol. 2024, 15, 1453–1472, doi:10.3762/bjnano.15.117

Graphical Abstract
  • cubic (bcc) Fe lattice it is about 1.5–2.0 eV; the energy of interstitial formation ranges from 2 to 4 eV. It is accepted that interstitials are mobile at room (low) temperature because of significantly less migration energies of 0.01–0.50 eV, whereas vacancies are mobile at very high temperatures
PDF
Album
Full Research Paper
Published 21 Nov 2024

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • at low temperature and exposed to ion irradiation (Figure 2). Discussion MS and XPS data support the idea that, upon ion beam exposure, the initial process to occur is Pt–CO bond dissociation, evolving both CO ligands as the first volatile product. The volatilization of CO is readily identified in
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Investigation of Hf/Ti bilayers for the development of transition-edge sensor microcalorimeters

  • Victoria Y. Safonova,
  • Anna V. Gordeeva,
  • Anton V. Blagodatkin,
  • Dmitry A. Pimanov,
  • Anton A. Yablokov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2024, 15, 1353–1361, doi:10.3762/bjnano.15.108

Graphical Abstract
  • . Otherwise, the critical temperature of the structures would vary significantly, which we do not observe, as shown below. Cryogenic Measurement Results Low-temperature measurements of the chips with structures were performed in a Triton 200 dilution cryostat. The chips were placed in a 16-pin sample holder
PDF
Album
Full Research Paper
Published 06 Nov 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • for any type of instrument and ion species, which includes gallium FIBs, plasma FIBs, helium ion microscopy FIBs, as well as low-temperature ion source and magneto-optical trap ion source FIBs. Results and Discussion SRIM simulations SRIM simulations were carried out to evaluate the interactions of 5
PDF
Album
Full Research Paper
Published 27 Sep 2024

Bolometric IR photoresponse based on a 3D micro-nano integrated CNT architecture

  • Yasameen Al-Mafrachi,
  • Sandeep Yadav,
  • Sascha Preu,
  • Jörg J. Schneider and
  • Oktay Yilmazoglu

Beilstein J. Nanotechnol. 2024, 15, 1030–1040, doi:10.3762/bjnano.15.84

Graphical Abstract
  • comparable to the responsivity of a vertically aligned MWCNT design obtained at very low temperature (84 K) and under vacuum conditions [25]. The responsivity of our miniaturized architecture in sample 2 was also competitive with larger bolometer architectures using suspended MWCNTs [23][24] and SWCNTs [22
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • diameters of 2 and 8 nm are presented. A simple visual inspection confirms the formation of a multifaceted crystal surface at low temperature, while a smoother and uniform surface is seen at high temperature. The temperature dependence of the average coordination number as a function of the NP diameter is
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • precisely etched to create separated nanocavity regions for enhancing the detection of biomolecule species. It has been reported that the SE SB FET-based biosensor structure offers a significant improvement in sensitivity at low-temperature values. Additionally, the SE SB FET-based biosensor provides
PDF
Album
Review
Published 06 Aug 2024

Effects of cutting tool geometry on material removal of a gradient nanograined CoCrNi medium entropy alloy

  • Yu-Sheng Lu,
  • Yu-Xuan Hung,
  • Thi-Xuyen Bui and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2024, 15, 925–940, doi:10.3762/bjnano.15.76

Graphical Abstract
  • structure of such substrates is more prone to generating twinning boundaries with hexagonally close-packed (HCP) phases during the deformation process, which enables better performance in low-temperature environments, such as industry in cold areas and aerospace. Ke et al. fabricated a high-quality MEA
  • (NiCoCr)95V5, which achieved an excellent strength and plasticity product exceeding 86 GPa·% at low temperatures [7]. Qiu et al. investigated the effects of adding Al, Ti, Mo, and W on low-temperature phase stability, mechanical properties, and deformation behavior of CoCrNi-based MEAs [8]. Strengthening
PDF
Album
Full Research Paper
Published 23 Jul 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • , yielding 82% and a BET surface area of 2050 m2·g−1 [20]. Since then, various green synthetic routes from ferric nitrate and metallic iron powder have been developed for generating MIL-100(Fe), including low-temperature synthesis [21], solvent-free synthesis [22], and dry gel conversion pathway [23]. It
  • (ethanol and water) inside the pore system were released at low temperature around 100 °C. Subsequently, the ligands (water and/or –OH ligands) connected to Fe sites of the iron oxo-clusters were removed, leaving unsaturated metal sites inside the framework. Finally, a significant weight loss (approx. 41.8
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • a carrier gas mixture of Ar/H2 5%, maintaining this temperature and flow for 30 min to allow NW growth. Subsequently, the reactor was naturally cooled to room temperature. Ga2O3 NWs, up to 100 μm in length, grew on SiO2/Si substrates downstream in the low-temperature zone maintained around 850–900
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024

Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements

  • Laurent Nony,
  • Sylvain Clair,
  • Daniel Uehli,
  • Aitziber Herrero,
  • Jean-Marc Themlin,
  • Andrea Campos,
  • Franck Para,
  • Alessandro Pioda and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2024, 15, 580–602, doi:10.3762/bjnano.15.50

Graphical Abstract
  • little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature
  • the framework focuses on a particular kind of sensor, it may be adapted to any high-k, high-Q nc-AFM probe used under similar conditions, such as silicon cantilevers and LERs. Keywords: low temperature; non-contact atomic force microscopy; qPlus sensors; quartz tuning fork; stiffness calibration
  • and at room temperature, nc-AFM experiments are mostly carried out with silicon cantilevers, similar to those used during AFM experiments in air or in liquid. Their stiffness rarely exceeds 100 N/m. In UHV and at low temperature, the use of cantilevers is more tedious because of the required in situ
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
  • ]. Autocatalytic growth (AG) of high-purity deposits leads to formation of individual crystallites as a consequence of precursor surface mobility at room temperature [21][24][25]. This mobility is suppressed when the surface is held at sufficiently low temperature. This was demonstrated by UHV experiments that
  • performed FEBID from Fe(CO)5 at 200 K, which produced a continuous deposit [21]. More recently, such an approach was applied more extensively and introduced as cryo-FEBID [28][29]. For cryo-FEBID, the precursor is condensed at multilayer coverage onto a surface held at low temperature. The electron beam
  • . As an important finding, desorption of the intact MA ligand does not occur during electron irradiation under cryogenic conditions. Assuming that MA as a neutral ligand dissociates readily from the Fe(CO)4MA complex, the low temperature would prevent MA from desorbing. This explanation is supported by
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • measured at low temperature in the near-bandgap region, as shown in Figure 6. Apart from that, a narrow emission peak is observed at 3.726 eV. This peak is assigned to multiphonon resonant Raman scattering (RRS) in ZnS since the quantum energy difference between the excitation laser line (3.814 eV) and the
  • eV in the spectra of Figure 6 measured at low temperature. The features come from residual ZnO related to the sacrificial network of microtetrapods. To demonstrate this assumption, the PL spectrum measured for the initial ZnO template is presented in Figure 6b (curve 3). This spectrum consists of a
PDF
Album
Full Research Paper
Published 02 May 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • of defects. Experimental A combined STM-AFM was operated in ultrahigh vacuum (5 × 10−9 Pa) and at low temperature (5 K). Surfaces of Ir(111) were cleaned by Ar+ ion bombardement and annealing. The epitaxial growth of graphene proceeded by exposing the heated (1300 K) Ir(111) surface to the gaseous
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Modulated critical currents of spin-transfer torque-induced resistance changes in NiCu/Cu multilayered nanowires

  • Mengqi Fu,
  • Roman Hartmann,
  • Julian Braun,
  • Sergej Andreev,
  • Torsten Pietsch and
  • Elke Scheer

Beilstein J. Nanotechnol. 2024, 15, 360–366, doi:10.3762/bjnano.15.32

Graphical Abstract
  • of STT-assisted resistance switching in multilayered nanowires, raw data before the background subtraction, a schematic diagram of the four-point measurements at low temperature, 2D color maps of (dV/dI)red over a larger current range and under upsweep of the magnetic field, the potential influence
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • August K. Roos Ermes Scarano Elisabet K. Arvidsson Erik Holmgren David B. Haviland Department of Applied Physics, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, SE-114 19 Stockholm, Sweden 10.3762/bjnano.15.23 Abstract We describe a transducer for low-temperature atomic force
  • the internal losses. To decrease η while remaining overcoupled, the shunt inductor Ls should satisfy 50 Ω > iωcLs > R. As a final consideration, the temperature when operating low-temperature AFMs is typically around 1 K. For temperatures closer to Tc, the internal losses of the microwave circuit
  • described our approach to designing cantilever force sensors with integrated microwave cavity electromechanical sensing of flexural motion, based on the strain-dependent kinetic inductance of a superconducting nanowire. This type of force sensor is potentially interesting for low-temperature AFM as the
PDF
Album
Full Research Paper
Published 15 Feb 2024
Other Beilstein-Institut Open Science Activities