Search results

Search for "material properties" in Full Text gives 178 result(s) in Beilstein Journal of Nanotechnology.

Mechanical stability of individual bacterial cells under different osmotic pressure conditions: a nanoindentation study of Pseudomonas aeruginosa

  • Lizeth García-Torres,
  • Idania De Alba Montero,
  • Eleazar Samuel Kolosovas-Machuca,
  • Facundo Ruiz,
  • Sumati Bhatia,
  • Jose Luis Cuellar Camacho and
  • Jaime Ruiz-García

Beilstein J. Nanotechnol. 2025, 16, 1171–1183, doi:10.3762/bjnano.16.86

Graphical Abstract
  • performed in solution in a fluid chamber under controlled environmental conditions. Thus, critical structural changes on the lifestyle of the pathogen can be investigated [38][39][40][41][42]. Beyond imaging, AFM force spectroscopy capabilities are essential to extract material properties of the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2025

Influence of ion beam current on the structural, optical, and mechanical properties of TiO2 coatings: ion beam-assisted vs conventional electron beam evaporation

  • Agata Obstarczyk and
  • Urszula Wawrzaszek

Beilstein J. Nanotechnol. 2025, 16, 1097–1112, doi:10.3762/bjnano.16.81

Graphical Abstract
  • on material properties. Abrasion resistance tests showed that the TiO2 film deposited using the EBE method was the least abrasion-resistant compared to the IBAD films. To conclude, the use of additional ion-beam assistance during thin film deposition by the EBE method significantly increases the
PDF
Album
Full Research Paper
Published 14 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • ultrafast phenomena, enabling precise control of material properties [55][56][57][58]. This advancement has catalyzed new directions in nanomaterial processing and synthesis, such as producing controlled NPs through ultrafast laser–matter interactions. A notable example is the production of monodisperse NPs
  • structural inhomogeneities drive emergent material properties, the ability to observe such local fluctuations is increasingly vital. Single-particle imaging with several nanometers spatial and several tens of nanoseconds temporal resolution has been demonstrated using electron microscopy [71]. By integrating
  • parameters, improving reproducibility, and tailoring material properties for specific applications. Ultrafast optical techniques such as transient absorption spectroscopy (TAS) [84][85][86][87] have been applied to investigate the influence of the liquid environment on the energy relaxation processes of
PDF
Album
Review
Published 02 Jul 2025

Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering

  • Shankar Dutt,
  • Rudradeep Chakraborty,
  • Christian Notthoff,
  • Pablo Mota-Santiago,
  • Christina Trautmann and
  • Patrick Kluth

Beilstein J. Nanotechnol. 2025, 16, 899–909, doi:10.3762/bjnano.16.68

Graphical Abstract
  • , and nanofluidic applications. The characterization of the pore morphology and size distribution, along with its dependence on the material properties and fabrication parameters, is crucial to designing nanopore systems for specific applications. Here, we present a comprehensive study of track-etched
  • variations in material properties. While thermal SiO2 typically exhibits high homogeneity in local material properties, factors such as the etching process and the ion irradiation energy straggling may introduce an effective narrow size distribution of pores. Although we apply a Schulz–Zimm distribution to
PDF
Album
Full Research Paper
Published 12 Jun 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • control material properties by inducing damage and introducing defects in the host matrix in a controlled manner [8]. It offers the advantage of controlling the amount of energy transferred to the host system by selecting the desired ion energy, mass, and fluence [9]. Different types of lattice vacancies
PDF
Album
Full Research Paper
Published 11 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • ). This difference can be attributed to variations in alloy composition and material properties, which influence the ablation plume dynamics and particle formation kinetics during PLAL. Specifically, the thermal properties, such as melting point and heat conductivity, and the volatility of the alloy
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  •  1i–k). Operando characterization of InP nanowire p–n junctions Semiconductor nanowires offer unprecedented possibilities in utilizing, combining, and modifying material properties for application in electronic, photonic, energy harvesting, or quantum information devices [15][16]. Their small
PDF
Album
Review
Published 23 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • understanding of material properties, particularly at the nanoscale, where phenomena such as quantum confinement, interface effects, and defect dynamics play a critical role. Innovations in characterization techniques have enabled researchers to explore these properties with unprecedented precision, paving the
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

Focused ion and electron beams for synthesis and characterization of nanomaterials

  • Aleksandra Szkudlarek

Beilstein J. Nanotechnol. 2025, 16, 613–616, doi:10.3762/bjnano.16.47

Graphical Abstract
  • tailored 3D architectures [4]. Focused beams not only allow the characterization of atomic structures but also enable precise local modification of material properties through ion milling and the creation of novel structures with tunable mechanical, electrical, and magnetic properties using gas-assisted
PDF
Album
Editorial
Published 02 May 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • ]. Nanostructures produced by these methods also serve as prototypes for fundamental experiments on how material properties vary with dimension [28][29]. A key challenge with the FEBID technique is achieving pure metallic nanostructures [30]. To obtain metal deposits, metal complexes with organic and inorganic
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • subsequent alterations in the material properties. As indicated by the TRIM simulations, a single nitrogen ion with this energy can produce 95 displacements, that is, 95 vacancies and no replacement collisions, before coming to a stop, as illustrated in Figure 1D. This significant level of displacement
PDF
Album
Full Research Paper
Published 01 Apr 2025

Biomimetics and bioinspired surfaces: from nature to theory and applications

  • Rhainer Guillermo Ferreira,
  • Thies H. Büscher,
  • Manuela Rebora,
  • Poramate Manoonpong,
  • Zhendong Dai and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2025, 16, 418–421, doi:10.3762/bjnano.16.32

Graphical Abstract
  • environmental pressures. Such pressures involve intricate interactions between surface structures and the environment across different scales, including nano-, micro-, and macroscales. Biomimetics aims at making use of understanding how these adaptations and the particular material properties of these surfaces
PDF
Album
Editorial
Published 26 Mar 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • development cycles and high cost. The rapid advancement in AI and machine learning is revolutionizing material design and screening processes [219]. Machine learning has achieved significant success in predicting various material properties, including morphology, toxicity, photothermal characteristics
PDF
Album
Review
Published 17 Feb 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • perfect material properties, such as uniformity in thickness, defect density, and material interfaces, which do not represent real-world conditions. Further, complicated interfacial effects between the active layer and the HTLs, such as chemical interactions, degradation, or the existence of intermediary
PDF
Album
Full Research Paper
Published 06 Feb 2025

Modeling and simulation of carbon-nanocomposite-based gas sensors

  • Roopa Hegde,
  • Punya Prabha V,
  • Shipra Upadhyay and
  • Krishna S B

Beilstein J. Nanotechnol. 2025, 16, 90–96, doi:10.3762/bjnano.16.9

Graphical Abstract
  • is made up of a carbon nanocomposite material, and the material properties considered in this project are as shown in Table 1. Gas chamber modeling The sensor is placed within an enclosed chamber which consist of two outlets and a single inlet at the top of the chamber. This chamber is specifically
PDF
Album
Full Research Paper
Published 30 Jan 2025

Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies

  • Fabio Le Piane,
  • Mario Vozza,
  • Matteo Baldoni and
  • Francesco Mercuri

Beilstein J. Nanotechnol. 2024, 15, 1498–1521, doi:10.3762/bjnano.15.119

Graphical Abstract
  • ]. The digital twin serves as a powerful tool for predictive modelling, optimization, and design of materials, allowing researchers to assess performance under different conditions, predict degradation mechanisms, and optimize material properties. It also facilitates virtual experimentation, reducing the
  • the material, capturing real-world behavior and enabling better calibration and validation of the models. This integration allows researchers to refine and improve the models, making them more accurate and reliable in predicting material properties, performance, and behavior under different scenarios
  • . Physics-based models are built upon fundamental principles and equations, capturing the underlying physics or chemistry of materials. These models describe the interactions between atoms, molecules, or particles, allowing researchers to simulate and predict material properties and behavior at different
PDF
Album
Perspective
Published 27 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • , DBRs are expected to play an increasingly important role in realizing the promise of quantum technologies. Lithium niobate (LN) is a compelling choice for DBRs due to its unique combination of material properties as it has a high refractive index and exhibits unique optical and electro-optic properties
  • Supporting Information File 1) should also simultaneously consider the cost of computation time and quality. Electromagnetic wave frequency domain solves a modeling problem involving Maxwell’s equations under the assumption that all material properties are constant concerning field strength, and the fields
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • applied to the foretibial grooming structures. We interpreted the final images and described the material properties of the cuticle as follows: (1) Red areas are likely well-sclerotized, (2) green-to-yellow areas are less sclerotized in comparison to red ones and mechanically stable, but relatively
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

The effect of age on the attachment ability of stick insects (Phasmatodea)

  • Marie Grote,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 867–883, doi:10.3762/bjnano.15.72

Graphical Abstract
  • area with the substrate. Keywords: adhesion; attachment pads; friction; locomotion; morphology; material properties; wear; Introduction Ageing inexorably affects most living organisms, does not exclude insects, and makes different organs or tissues susceptible to wear or fatigue of material [1
  • euplantulae of older animals. The wear patterns included scarred scratches (Figure 7E), scarred tissue from larger wounds (Figure 7F), and deformations of the pad surface that potentially arose from inhomogeneous changes of the material properties of the cuticle (Figure 7G). Other wear marks were found on the
  • , damage, contaminations, and changes of material properties of the integument of the attachment pads. Geckos, however, continuously shed their skin throughout their life, in contrast to insects; this was shown to enable regeneration of the adhesive properties of the attachment system to some extent [62
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

Enhancing higher-order modal response in multifrequency atomic force microscopy with a coupled cantilever system

  • Wendong Sun,
  • Jianqiang Qian,
  • Yingzi Li,
  • Yanan Chen,
  • Zhipeng Dou,
  • Rui Lin,
  • Peng Cheng,
  • Xiaodong Gao,
  • Quan Yuan and
  • Yifan Hu

Beilstein J. Nanotechnol. 2024, 15, 694–703, doi:10.3762/bjnano.15.57

Graphical Abstract
  • ; Introduction Multifrequency atomic force microscopy (AFM) has become an important tool for nanoscale imaging and characterization [1][2]. This technique involves the excitation and detection of multiple frequencies to improve data acquisition speed, sensitivity, and resolution, as well as to enable material
  • properties mapping with additional contrast [3]. Among the various multifrequency AFM methods, bimodal AFM is the most commonly used, which relies on the excitation and detection of two resonant frequencies [4]. Most studies have focused on the first two eigenmodes of the cantilever, with the fundamental
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2024

Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect Medauroidea extradentata (Phasmatodea)

  • Julian Thomas,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 612–630, doi:10.3762/bjnano.15.52

Graphical Abstract
  • , especially in Phasmatodea. Recent investigations of the ultrastructure and material properties of the smooth tarsal attachment pads of phasmids complement our information on the morphology of the droplets [38], biomechanics of their attachment performance [28][46][47][48][49][50][51], and the complementarity
  •  5 (euplantulae)). In general, the hierarchical organization of the fibres enables local deformation to adjust to the surface profile of the substrate (e.g., [20][45][70]). This results in anisotropic material properties (i.e., the pads are soft during compression); however, those withstand high
  • the arolium and euplantulae of the cockroach G. portentosa. The hollow spaces between fibres within the primary rod layer and the branching rod layer can also be important for adjusting the material properties of the attachment pads. Adhesive secretion kept within the spaces could impact the
PDF
Album
Full Research Paper
Published 29 May 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • affinities for the drug molecule at different pH values. Hence, the observed differences in drug release profiles between pH 5.5 and 7.4 can be plausibly attributed to these pH-dependent interactions [57]. Factors such as pH value, coating material properties, coating thickness, and drug binding capacity
PDF
Album
Full Research Paper
Published 28 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • of various factors concerning material properties and the parameters of the impinging ion beam [22][23][24][25]. While crucial for modern nanotechnology, SHI cause severe damage to DNA [26][27][28]. This challenges the use of DNA-based nanomaterials for combined top-down and bottom-up nanoprocessing
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

  • Mustafa Kangül,
  • Navid Asmari,
  • Santiago H. Andany,
  • Marcos Penedo and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2024, 15, 134–143, doi:10.3762/bjnano.15.13

Graphical Abstract
  • material properties [17][18][19][20][21][22]. AFM companies included variations of the pulse force mode in their microscopes, such as PeakForce™ Tapping (Bruker), Digital Pulsed Force Mode™ (WITec), HybriD mode (NT-DMT), and WaveMode (Nanosurf). While these implementations have subtle differences, we refer
  • led to a significant increase in the achievable ORT frequency [24]. The other speed-limiting factor is the snap-off ringing of the cantilever, especially for applications in air and vacuum [27]. Although this physical phenomenon can be used to extract material properties [28], it slows down the
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • achieve precise optical characterization, one could employ spectroscopic ellipsometry (SE) with more refined division into sub-layers [26] and consider additional material properties, such as the anisotropy of PAAO [27] and the optical dispersion of the refractive index (RI) of Al2O3 [28]. However, for
PDF
Album
Full Research Paper
Published 31 Jan 2024
Other Beilstein-Institut Open Science Activities