Search results

Search for "mobility" in Full Text gives 426 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • intensity for the most preferred orientation along the [111] direction is observed with rising substrate temperature up to 400 °C. This may be because atoms have more thermal energy with increasing substrate temperature; therefore, the surface mobility of atoms increases, which leads to rearrangement and
  • steps, namely, condensation, nucleation, and crystallization on the substrate surface. The mobility of atoms on the substrate surface is very much affected by the substrate temperature. At low substrate temperatures, because of the low diffusion rate and low mobility of atoms, columnar microstructures
  • form on the substrate surface. With the increase in substrate temperature, mobility and diffusion rate of atoms increase, which results in the evolution of grains that further recrystallize at higher substrate temperatures [28]. The observed variation in the crystallite size is due to changes in
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • exposure to higher concentrations of GO could induce DNA damage through the base excision repair (BER) pathway in HEK 293T cells [58]. The presence of high mobility and sharp edges of GO could potentially contribute to the genotoxic behavior [58]. On the other hand, Chl have shown its capacity for inducing
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • high solubility [53]. This phenomenon makes it difficult to electrospin chitosan because of its high viscosity [54]. Moreover, the formation of strong hydrogen bonds in a 3D network contributes to difficulties in the mobility of polymeric chains when an electric field is applied [55]. Because of these
PDF
Album
Review
Published 26 Feb 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • particularly high when the dipole moment exceeds 2.0 D. The hybridization of halogens does not impact electron mobility. However, it does lead to a decrease in hole mobility while possibly enhancing the separation of charge carriers [94]. In order to enhance the photocatalytic activity of BiOX, significant
  • sites, slow kinetics of surface reactions, and the reduced mobility of charges, resulting in electron delocalization [99][100]. The molecular rearrangement of g-C3N4 has been the subject of recent research because of its potential to alter the surface chemistry and textural structure [101]. This
  • capabilities in degrading CIP (82.6% within 2 h) and generating hydrogen from rainwater. The effective separation and mobility of photogenerated charge carriers were credited to the role of Ag nanoparticles as electron mediators. There are some other observations, which are shown below in Table 4. Graphene
PDF
Album
Review
Published 25 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • treatment of chronic ocular diseases, as well as the “explosive release” of passive drug delivery systems [116]. Furthermore, photothermal drug delivery systems can be surface-modified to prolong drug residence time, improve mobility, avoid trapping, and provide targeting capabilities, which helps to
PDF
Album
Review
Published 17 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • al. [117], it was demonstrated that existing MMM models consistently overestimated gas permeability in molecular sieve-integrated membranes, a discrepancy attributed to reduced polymer chain mobility at the polymer–sieve interface region, as evidenced by independent observations of increased glass
  • reduce the rigidified polymer formation. The overall rigidity of the polymer also has a large impact on the MOF–polymer interface. Rubbery polymers tend to reduce the propensity for interface defects, as the polymer chain mobility enables better confinement to the MOF surface [114][116]. However, as
  • stated, the more flexible the polymer, the less selective, yet more permeable, it becomes. In contrast, glassy polymers, characterized by low chain mobility and increased rigidity, have the benefit of restricting the movement of gas molecules, but at the cost of reduced permeability and MOF compatibility
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • PEDOT:PSS are the two HTLs that are analyzed concerning the double perovskite material LNMO. The HTL needs better conductivity, better electron blocking, and more hole mobility for better carrier transportation at the perovskite/HTL interface. It is hydrophobic with a wider bandgap and does not easily
  • deteriorate. Inorganic HTLs proved to perform better. Some examples of inorganic HTLs are CuI, Cu2O, and CuSCN. Organic HTLs consist of polymers or complex molecules, which affect the photovoltaic properties of the device in terms of light absorption and carrier mobility. Some examples of organic materials
  • both HTL materials (Table 3 and Figure 3). The increase of the PCE with Cu2O signifies a better absorption of light with minimum reflection and, hence, increased carrier transportation across the interface. Cu2O is inorganic, and the high temperature leads to improved hole mobility and better charge
PDF
Album
Full Research Paper
Published 06 Feb 2025

Bioinspired nanofilament coatings for scale reduction on steel

  • Siad Dahir Ali,
  • Mette Heidemann Rasmussen,
  • Jacopo Catalano,
  • Christian Husum Frederiksen and
  • Tobias Weidner

Beilstein J. Nanotechnol. 2025, 16, 25–34, doi:10.3762/bjnano.16.3

Graphical Abstract
  • silicone nanofilaments on steel surfaces, a novel application that has not been previously reported. The results indicate that SNF coatings can effectively render steel surfaces super-hydrophobic, as evidenced by high contact angles, high droplet mobility, and stable morphology under shear stress and
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • rather than deep penetration into the hydrophobic core. The MSD analysis (Figure 8f) reveals that OLA significantly enhances the lateral mobility of lipids within the bilayer, indicative of a fluidizing effect. This increased mobility likely results from OLA’s ability to disrupt lipid packing through its
  • lipid disorder. This was evidenced by changes in the SCD, reflecting disruption in the orderly packing of lipid acyl chains. The incorporation of OLA disrupts this packing, contributing to increased membrane fluidity. Simultaneously, the simulations revealed enhanced lateral mobility of lipids, as
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Ultrablack color in velvet ant cuticle

  • Vinicius Marques Lopez,
  • Wencke Krings,
  • Juliana Reis Machado,
  • Stanislav Gorb and
  • Rhainer Guillermo-Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1554–1565, doi:10.3762/bjnano.15.122

Graphical Abstract
  • occurs in forested habitats adjoining open landscapes. Demonstrating remarkable mobility, it covers significant distances in pursuit of hosts on the ground. While sightings may occur throughout the day, peak activity typically coincides with the early morning and late afternoon, during periods of subdued
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2024

The round-robin approach applied to nanoinformatics: consensus prediction of nanomaterials zeta potential

  • Dimitra-Danai Varsou,
  • Arkaprava Banerjee,
  • Joyita Roy,
  • Kunal Roy,
  • Giannis Savvas,
  • Haralambos Sarimveis,
  • Ewelina Wyrzykowska,
  • Mateusz Balicki,
  • Tomasz Puzyn,
  • Georgia Melagraki,
  • Iseult Lynch and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 1536–1553, doi:10.3762/bjnano.15.121

Graphical Abstract
  • of nanoinformatics, various consensus approaches have been proposed over the past years for the prediction of different NM endpoints, such as NMs’ cellular uptake [20], zeta potential (ZP) [16], and electrophoretic mobility [21]. The complexity of predictive models requires the development of
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2024

Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe2

  • Guixian Liu,
  • Yufan Wang,
  • Zhoujuan Xu,
  • Zhouxiaosong Zeng,
  • Lanyu Huang,
  • Cuihuan Ge and
  • Xiao Wang

Beilstein J. Nanotechnol. 2024, 15, 1362–1368, doi:10.3762/bjnano.15.109

Graphical Abstract
  • consistent, demonstrating that the high-speed heterojunction photodetector can work under various conditions. Comparison of TRPC in the heterojunction and graphene regions We then considered the intrinsic response time of graphene within the heterojunction. Because of its high carrier mobility and broadband
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • applications in environmental monitoring, food safety, and medical diagnostics [98]. The mobility of the antennae of long-horned bees (e.g., Eucera longicornis) are used by males to court females by gently grasping and pressing their antennae (Figure 1C). The antennae of long-horned bees and other
  • are movable and exhibit an elastic base to ensure the high mobility of wings [124]. The coordinated movement of wings facilitated by this mechanism enables synchronized action and improved aerodynamic performance, while also allowing for decoupling during periods of rest, thereby avoiding aerodynamic
  • on the uneven surfaces of host eggs [134]. These examples highlight the potential for biomimetic applications of such structures in developing advanced adhesive technologies and improving robotic mobility on uneven terrain and in microgravity environments [135]. Corbicula: Several bee species (e.g
PDF
Album
Review
Published 05 Nov 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • -scale production more feasible [9]. Also, the mechanical robustness and flexibility of the 2D materials will give extra room to design the PSCs for a wide range of applications areas [10]. The high carrier mobility and enhanced optoelectronic characteristics can improve the device performance of
  • valleys provides extra carrier pockets for transportation, further increasing carrier mobility. Also, the larger valley degeneracy will increase the density of states (DOS) effective mass without influencing the carrier mobility. We have also calculated the total DOS to understand and justify the band
  • ), conduction/valence band density of states, electron/hole mobility, electron affinity, and work function can be derived from the initial band energy calculation. We calculated the effective masses of electrons and holes as = 0.167me and = 0.1768me, respectively, which are very close to the values ( = 0.17me
PDF
Album
Full Research Paper
Published 11 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • increased mobility of the metallic clusters leading to Ostwald ripening were assumed to play an important role [9]. In order to achieve practicable vertical growth rates, new precursors are being searched for that allow for lower process temperatures. Here, we employ the compound (hfac)AgPMe3 (cf
  • or Hhfac, removing most of the ligand elements. A second important factor here could be the thermal energy input from the elevated stage temperature of 60 °C, which increases the mobility of the formed silver atoms and clusters in the carbonaceous matrix. Finally, collisional momentum transfer from
  • , this implies again a strong mobility of silver, which most probably migrates from the pillar volume and enriches as an interfacial layer at the bottom. Finally, a helix with a radius of 500 nm and one turn was deposited by scanning the electron beam in a circular path with a pitch of 10−4 nm and a
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • a monolayer of gas coverage. The surface area of nanomaterials can also be determined by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy [64][65]. Zeta potential: The zeta potential of nanoparticles can be calculated from the electrophoretic mobility of particles in a particular
PDF
Album
Review
Published 22 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • fact, there are flat caveolin-coated areas at the plasma membrane where caveolin seems to prevent endocytic uptake of cholera toxin and autocrine mobility factor (AMF) [55]. Caveolin clearly has effects not related to caveolae [56], and the same is the case for its partner cavin [57]. Another
PDF
Album
Perspective
Published 12 Aug 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • are in a supercooled amorphous, and not liquid, state. The temperature dependence of the Berry parameter, δ, of the Au and Pt NPs is shown in Figure 3a and Figure 3b, respectively. The NP diameters vary from 1 to 8 nm. The Berry parameter quantifies the mobility of the atoms in the NPs by measuring
  • first-order transition is identified. The temperature where the transition occurs is approximately 200 K smaller than the melting temperature of bulk crystalline Au, which is close to 1100 K. This difference stems from the higher mobility of the Au atoms in a finite-size cluster placed in vacuum
  • compared to the atomic mobility in a dense crystal/amorphous bulk material. For the Au NP with a diameter of 2 nm, a similar steep drop takes place at even lower temperatures of 500 and 600 K. This large shift in the transition temperature indicates that the NP diameter of 2 nm is smaller than a critical
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • , isolated grains are visible. Also, several gaps are present in the lines, where the grains apparently did not connect to each other. A FIB cross section of the line revealed that the gaps extend down to the substrate surface. The gaps and the granularity may arise from the high mobility of Pt, and
  • of migrating Pt species and particle coalescence than by the adsorption of precursor molecules. Furthermore, PtCx FEBID deposits exposed to e-beam curing showed an increase of Pt granule size, also indicating Pt mobility [60]. The presence of a multilayer of water on the substrate during deposition
  • is a factor that should be considered when comparing the obtained data with other studies of Pt nanoparticle mobility on surfaces. While the lines obtained at circa 0.5 nA approach a closed structure, lines deposited at higher currents show more substantial cracking and lack of continuity. This
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • group the data into categories [60]. Related measures are the isoelectric point, which corresponds to the pH at which a nanoparticle suspension has zero zeta potential [15][17], the surface charge [31][36][63], the conductivity [77], and the electrophoretic mobility [77]. Magnetic properties are also
PDF
Album
Supp Info
Review
Published 11 Jul 2024

Reduced subthreshold swing in a vertical tunnel FET using a low-work-function live metal strip and a low-k material at the drain

  • Kalai Selvi Kanagarajan and
  • Dhanalakshmi Krishnan Sadhasivan

Beilstein J. Nanotechnol. 2024, 15, 713–718, doi:10.3762/bjnano.15.59

Graphical Abstract
  • compared to the VTFET in [12] to demonstrate the effects of the low-work-function live strip and the low-k material. The device parameters used are listed in Table 1. Reference [12] used bandgap narrowing, Shockley–Read–Hall recombination, Lombardi's mobility model, and band-to-band (non-local) modeling
PDF
Album
Full Research Paper
Published 19 Jun 2024

Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface

  • Niklas Humberg,
  • Lukas Grönwoldt and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2024, 15, 556–568, doi:10.3762/bjnano.15.48

Graphical Abstract
  • found a hole mobility of 0.1 cm2·V−1·s−1 and a photocurrent of about 1 mA·cm−2. These observations were both attributed to a close packing of the molecules due to strong intermolecular H-bonds. The empirical formula of QA is C20H12N2O2, and a structural formula and a hard-sphere model of QA are
  • of orientations A and C (which exhibit equivalent adsorption geometries at the Ag step edges, see Figure 1) adapt more favorable adsorption sites than those in orientations B and D. Hence, the nuclei of orientations A and C are more stable. In addition, it may be possible that the increased mobility
  • . This is supported by the fact that an increased mobility of QA molecules (i.e., during deposition at a sample temperature of 400 K instead of 300 K) promotes the formation of chains with orientation E. QA chain growth across Ag step edges As stated above, at 300 K, the QA chains are capable of growing
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
  • ]. Autocatalytic growth (AG) of high-purity deposits leads to formation of individual crystallites as a consequence of precursor surface mobility at room temperature [21][24][25]. This mobility is suppressed when the surface is held at sufficiently low temperature. This was demonstrated by UHV experiments that
  • elements (referred to herein as scenario A) [54][55]. Therefore, we must first critically reflect upon the validity of composition and thickness data derived from the deposition experiments described herein. According to earlier results [21][24][25], surface mobility of the precursor at room temperature in
  • reflect the decrease of uncovered Ta substrate area than an increase of the deposit thickness [27]. In contrast, a more homogeneous deposit is anticipated at cryogenic temperature, where surface mobility is lower [21]. As the situation in reality most likely lies somewhere between scenarios A and B, a
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • , especially considering the greatly reduced mobility of Ag atoms at lower temperatures preventing slippage of the NW relative to the Si substrate. As a result, defects and necking develop in the middle of the suspended part, which agrees with the experimentally observed necking in scheme 1 (Figure 4). As
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • fascinating optical and electrical properties [1]. WOx is a wide-bandgap oxide semiconductor with a large excitonic binding energy of 0.15 eV and a high optical absorption coefficient (≥104 cm−1 in the UV region) [2]. These, in conjunction with decent carrier mobility (12 cm2·V−1·s−1), make this material an
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024
Other Beilstein-Institut Open Science Activities