Search results

Search for "nanofabrication" in Full Text gives 118 result(s) in Beilstein Journal of Nanotechnology.

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • materials with novel properties. The development of substances and methods with enhanced water dispersibility and bioavailability from materials such as berberine and curcumin is a current trend. Several studies on the nanofabrication of berberine aimed at improving its bioavailability and evaluating its
PDF
Album
Full Research Paper
Published 27 Feb 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • substantially smaller than the sticking coefficients previously assumed for Me3CpPtMe (1.0). Furthermore, depositions performed at different substrate temperatures indicate a temperature dependence of the sticking coefficient. Keywords: adsorption; continuum model; FEBID; nanofabrication; sticking coefficient
  • is needed and can be obtained based on a simulation of the FEBID process using the so-called continuum model that can be of great assistance for the nanofabrication process optimization [2][3]. Here again, sufficiently accurate knowledge of the values for the model-dependent set of precursor
  • dynamics of larger precursor molecules. Methods A dual-beam microscope Nova 600 (FEI Company, the Netherlands) at Goethe University Frankfurt was used for the nanofabrication process. Structures were deposited on a 500 nm thick Au surface on top of a SiO2-terminated Si substrate in order to prevent
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • Focused ion beam-induced deposition (FIBID) and focused electron beam-induced deposition (FEBID) are vacuum-based, charged-particle bottom-up nanofabrication techniques that directly fabricate metal containing nanostructures as a consequence of the reactions between ions or electrons and organometallic
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • microscope using commercially available components and chemicals, which paves the way for a broader application of direct etching-assisted FEBID to obtain pure metallic structures. Keywords: FEBID; gold; nanofabrication; platinum; purification; Introduction Focused electron beam-induced deposition (FEBID
  • ) is a nanofabrication technique that allows for the direct writing of three-dimensional nanostructures [1][2][3]. In FEBID, a gaseous precursor, often an organometallic compound, is injected in the vacuum chamber of a scanning electron microscope (SEM), adsorbed on a substrate, and dissociated by a
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Electron-induced ligand loss from iron tetracarbonyl methyl acrylate

  • Hlib Lyshchuk,
  • Atul Chaudhary,
  • Thomas F. M. Luxford,
  • Miloš Ranković,
  • Jaroslav Kočišek,
  • Juraj Fedor,
  • Lisa McElwee-White and
  • Pamir Nag

Beilstein J. Nanotechnol. 2024, 15, 797–807, doi:10.3762/bjnano.15.66

Graphical Abstract
  • the interaction with free electrons. The motivation comes from the possible use of this molecule as a nanofabrication precursor and from the corresponding need to understand its elementary reactions fundamental to the electron-induced deposition. We utilize two complementary electron collision setups
  • not visible in the linear scale of Figure 3a, which was also recorded on the CLUB setup at low electron energies). Conclusion We report on electron-induced fragmentation of Fe(CO)4MA with a view of its possible use as a nanofabrication precursor. Dissociative ionization of this molecule leads to
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • semiconductor heterostructures [13]. Metal and dielectric layers can be used as hard masks for achieving high resolution and throughput of the FIB nanofabrication process [14]. Modification of integrated circuits [15] is an industrially relevant application of multilayer structure processing. Effective
PDF
Album
Full Research Paper
Published 24 Jun 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • first spin a thin layer of an adhesion promoter (AR 300–80) before spinning a roughly 170 nm thick layer of the electron-beam resist ARP–6200–09 (CSAR 09), baking at 150 °C for 1 min. We expose with a dose of 110 μC/cm2 in a Voyager EBL system from Raith Nanofabrication and etch the Nb-Ti-N film using
PDF
Album
Full Research Paper
Published 15 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • unperturbed. Present stability and nature of damages on DNA origami nanostructures enable fusion of DNA origami advantages such as shape and positioning control into novel ion beam nanofabrication approaches. Keywords: DNA nanotechnology; DNA origami; FIB; heavy ions; Introduction Ion beam interaction with
  • method for nanofabrication such as FIB, which also happens to cover the low-energy interaction regime. The method is widely available as a complement to scanning electron microscopes. Focused ion beams allow for both subtractive and additive nanoscale manufacturing [31] and can also be used for chemical
  • nanometer scale and the nanometric precision of DNA origami-based assembly open possibilities in more precise tuning and control of nanofabrication. Here we analyze the consequences of ion beam irradiation on 2D DNA origami nanotriangles deposited on Si as a model substrate and resulting nanostructure
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • , Latvia Faculty of Physics, Mathematics and Optometry, University of Latvia, 3 Jelgavas Str., Riga LV-1004, Latvia 10.3762/bjnano.15.12 Abstract Porous anodic aluminum oxide (PAAO), sometimes referred to as nanoporous anodic alumina, serves as a cost-effective template for nanofabrication in many fields
  • applications in many fields of science and technology, including nanofabrication [1], optical coatings [2], sensing [3][4][5], and others [6]. Many synthesis protocols have been developed for precise control of the pore structure of PAAO [7], which allow for the creation of nanoscale patterns for various types
PDF
Album
Full Research Paper
Published 31 Jan 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • imaging; nanodisk; nanofabrication; permalloy; Introduction The ability to study the spatial distribution of magnetization in ferromagnetic nanostructures is important for developing nanoelectronics, particularly for data storage and information processing. A vortex spin configuration has been observed
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • that can overcome these challenges [27]. Specifically, light-based 3D printing techniques such as stereolithography (SLA), digital light processing (DLP), and two-photon polymerization (2PP) simplify the rapid prototyping workflow when compared to traditional micro- and nanofabrication methods [28][29
PDF
Album
Perspective
Published 15 Aug 2023

Nanoarchitectonics for advanced applications in energy, environment and biology: Method for everything in materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 738–740, doi:10.3762/bjnano.14.60

Graphical Abstract
  • in the creation of new materials by extracting and processing natural resources, and using these resources in nanofabrication. In order to establish a methodology to generate new materials which takes advantage of the properties of nanostructures, it is necessary to integrate science and technology
  • - and nanofabrication sectors as well as in bio-related sciences [9]. Nanoarchitectonics bridges the worlds of nanotechnology and materials science integrating all related scientific fields in between. Fundamentally, all materials are composed of atoms and molecules, so nanoarchitectonics is applicable
PDF
Album
Editorial
Published 19 Jun 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • : GaN/Ag; magnetron sputtering; nanofabrication; pulsed laser deposition; SERS substrates; surface-enhanced Raman spectroscopy (SERS); Introduction Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and specific technique with multiplexing capabilities [1][2][3][4]. It is considered for
PDF
Album
Full Research Paper
Published 03 May 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • to developing different kinds of nanofabrication methods during the past decades. For example, silicon oxide (SiOx) nanostructures can be grown by the catalyzing effect of Au nanoparticles based on the vapor–liquid–solid (VLS) mechanism [1][2][3][4]. Au–SiOx nanoflowers consisting of Au nanoparticles
  • substrate at higher temperatures in oxygen-deficient environment [3][4]. Another cost-effective nanofabrication method, thin film dewetting, driven by the reduction of the surface energy and the interface energy has also been profusely studied because it provides a straightforward and fast way to produce
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • , photolithography, embossing, deposition, and sol–gel nanofabrication, all of which can provide high specific surface areas [19][24][25][26][27][28]. Nanomaterials can also be divided into inorganic nanomaterials and organic nanomaterials. In inorganic nanomaterials, metal nanomaterials and carbon nanomaterials
PDF
Album
Review
Published 25 Oct 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • tailor surface properties [13][14][15][16][17][18][19][20]. These monolayers can be modified with lithographic tools, such as scanning probes [21], UV light, X-rays, ions, or electron beams [22][23][24]. A particularly versatile nanofabrication scheme utilizes electron irradiation of aromatic SAMs to
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • . Funding This work was supported by JSPS KAKENHI (25286016 to M. Tanaka,17H02777 to K. Miki) and the NIMS Nanofabrication Platform in the Nanotechnology Platform Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • fragmentation and the related mechanism of nanostructure formation and growth using FEBID, which are essential for the further advancement of FEBID-based nanofabrication. The developed computational methodology is general and applicable to different precursor molecules, substrate types, and irradiation regimes
  • . The methodology can also be adjusted to simulate the nanostructure formation by other nanofabrication techniques using electron beams, such as direct electron beam lithography. In the present study, the methodology is applied to the IDMD simulation of the FEBID of Pt(PF3)4, a widely studied precursor
  • of the fabricated nanostructures is still a technological challenge [7], mainly originating from the lack of molecular-level understanding of the irradiation-driven chemistry (IDC) underlying formation and growth of nanostructures. Further advances in FEBID-based nanofabrication require a deeper
PDF
Album
Full Research Paper
Published 13 Oct 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • century [1]. From its beginnings as primarily an imaging tool [2][3][4][5][6][7][8][9] it was established as a key tool in nanofabrication [10][11][12][13][14][15], defect engineering [16][17], and recently for material analysis [18][19]. The extended range of applications in which the second-generation
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • multifaceted instrument enabling a broad range of applications beyond imaging in which the finely focused helium ion beam is used for a variety of defect engineering, ion implantation, and nanofabrication tasks. Operation of the ion source with neon has extended the reach of this technology even further. This
  • irradiation effects, such as defect formation and ion implantation, are used to locally change the properties of the material, and at higher doses, nanofabrication is performed using localized material removal (by sputtering) or addition (by gas-assisted deposition). Sometimes, lower-dose irradiation effects
  • also lead to a nanofabrication outcome. For example, localized swelling by ion implantation can be used to pattern nanoscale surface topographies, ion-induced collisional mixing can restructure buried interfaces, and ion-induced chemical changes can be used for resist-based lithography. In the
PDF
Album
Review
Published 02 Jul 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o
  • nanometer range is heavily sought after. One promising candidate for ultraprecise nanofabrication is focused ion beam (FIB) machining. Focused ion beams locally remove material based on physical sputtering with a large degree of flexibility due to advanced beam control. FIB patterning is a direct single
  • ranging from several days to one or two months. For imaging and nanofabrication, only one of the three atoms is selected. This nearly ideal point source allows not only for high-resolution imaging but also for the milling of smallest geometric features [5][6][7]. Furthermore, large-area machining is
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • −. Keywords: Au(I) precursors; focused electron beam-induced deposition (FEBID); gold-NHC; gold precursors; nanofabrication; N-heterocyclic carbene; Introduction Focused electron beam-induced deposition (FEBID) is a nanofabrication technique that allows for the growth of three-dimensional free-standing
  • nanostructures [1][2][3][4]. This mask-less nanofabrication technique uses gaseous molecules as precursors. The gas molecules are introduced in the specimen chamber of a scanning electron microscope (SEM), adsorb onto a substrate, and dissociate upon electron irradiation, leaving a solid deposit on the substrate
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • established as a key nanofabrication tool for milling [7][8][9], defect engineering [10][11], and resist-based lithography [12][13], overcoming the resolution limitations of other FIB techniques [14][15]. Both bulk samples as well as thin membranes have been structured using the HIM. On membranes, the sputter
PDF
Album
Full Research Paper
Published 26 Feb 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • of its sub-nanometer imaging and ion-beam nanofabrication capabilities in materials science and engineering [1]. Although HIM soon proved to be a promising tool in the life sciences, the examination of biological samples by HIM proceeded at a much slower pace. In recent years, it has been used in the
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • study regarding biological HIM imaging of a whole variety of biological samples, including plants, bacteria, cancer cells, and a nematode worm, Pristionchus pacificus. The imaging of that worm will be discussed later in the section “Nanofabrication” regarding its innovative use of the combination of
PDF
Album
Review
Published 04 Jan 2021
Other Beilstein-Institut Open Science Activities