Search results

Search for "patterning" in Full Text gives 183 result(s) in Beilstein Journal of Nanotechnology.

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • other lithographic technique (laser-based or otherwise). However, the patterning of the target will influence the obtained NPs and NSs since the number of pulses incident on a particular surface area will vary with different scanning/writing conditions. Scanning parameters (e.g., speed of the stage or
  • properties make Hf metal suitable for laser patterning of sub-wavelength-size structures, and the choice of the liquid for LAL enables the variation of feature size. We have used linearly polarised light in the present study. The orientation of the LIPSS depends on the polarization and rotates with the input
  • potential material for sophisticated design patterning [66]. Conclusion The current study shows the successful single-step fabrication of HfO2 NPs and nanofibres in DW and HfC core–shell NPs with multilayered graphitic shells in toluene and anisole via LAL of Hf metal. The obtained NPs exhibit a broad size
PDF
Album
Full Research Paper
Published 18 Dec 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • any potential accumulative increase in local temperature. Being able to use a higher ion current in the nanoampere range in comparison with the previously suggested heat-reduced approach (where the beam current was reduced) addresses the issue of increased patterning times and cross sections with
  • approach of unfeasibly long patterning times. The results suggest that an additional reduction in ion beam current and applying blur and reduced overlap, when using low ion energies, can further reduce the induced heat. Using that combination might be required for processing materials exhibiting an even
  • set of experiments a 20% overlap and 50 nm blur were required to allow patterning with 29 pA and 70 pA to avoid an excessive amount of points which could not be computed by the Quanta 200 3D. The blur was chosen to be smaller than the width of the interaction volume, so that the latter remained the
PDF
Album
Full Research Paper
Published 27 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • primary electron energy and about 0.5 nA beam current. Rectangular patterns of 10 × 10 µm2 were scanned in an inward spiraling beam path with a 3 nm point-to-point pitch, a dwell time of 1 μs per point, and different numbers of passes using the Xenos Patterning software. A typical workflow involved the
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • the deposition are the precursor supply, the primary beam energy and current, and the patterning strategy. The deposits are built through consecutive electron beam spot exposures of the precursor molecules adsorbed on the substrate. The shape of the deposit is defined as an area containing an array of
  • discrete exposure points. The distance between exposure points is the pitch, while the exposure time for each point is the dwell time. This pattern is repeated for a certain number of passes [1]. The shape and size of the deposits are defined using the TFS “rectangle” or “line” patterning tools. The main
  • patterning parameters are the patterned area size, dwell time, primary beam energy and current, pitch, number of passes, and SEM chamber pressure during deposition or chamber pressure increase during deposition. The complete parameters for the deposits presented in this work are presented in Supporting
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • devices including Fresnel zone plates [4], X-ray lenses [5], optical tweezers [6], and plasmonic antennas [7]. The application of the FIB method is not limited to patterning single-component targets. This technique can also be employed for the modification of multilayer substrates. Depending on the task
  • multilayer films [8], the patterning of 2D materials [9], or the direct introduction of dopants into a solid-state host through recoil implantation [10]. Examples that rely on ion milling include patterning of magnetic multilayers [11], fabrication of optical metamaterials [12], and modification of
PDF
Album
Full Research Paper
Published 24 Jun 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • using FEBIE with water [25], namely dodecane (C12H26) for the deposition of carbon and crystals of MgSO4·7H2O for etching with water. Both precursors were let into the chamber at room temperature. The base pressure in the specimen chamber was between 2 × 10−6 and 4 × 10−6 mbar. During patterning (both
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • electron microscopy; Introduction Scientific research varying from electronics to photonics, homeland security, high-resolution parallel patterning of magnetic media, biotechnology, and medicine are based upon nanotechnology. These applications require nanopatterning techniques to fabricate devices or
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • communication devices. All those future technologies will require high-precision lithography techniques with excellent lateral resolution, high throughput, and minimized possibility of material damage. In the last decade, several approaches have been made to provide the most suitable method for patterning
  • be optimized to prevent unnecessary defects and reduce the detrimental impact on the underlying substrate. The optical microscope image of the graphene flake before the patterning process is shown in Figure 2A. The size of the etched lines, estimated based on SEM measurements, is usually smaller than
  • monolayer, bilayer at triple-layer graphene. A) Optical microscope image of a graphene flake prior to patterning; B) SEM image of the same flake after the patterning process; C) Raman map according to the spectra in (D), revealing the substrate (red line), pristine (green line), and exposed regions (blue
PDF
Album
Full Research Paper
Published 07 Feb 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • a clean lift-off process. The larger undercut is realized by multi-dose exposure, which consists of two parts: The main exposure is for patterning the nominal structure, and an additional exposure is for patterning the outline of the nominal structure. This additional exposure is performed with a
  • membrane also allows for high-resolution patterning since there is less electron scattering during exposure [26]. The purpose of applying two layers of resist is to create a large undercut by using a bottom layer that is more sensitive than the top layer. This prevents the unwanted deposition of metal that
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • photolithography for master mold preparation and soft lithography and solvent casting for PU film patterning. Challenges in the use of photoresist master molds for PDMS replica molding and microgroove formation were addressed using “reinforcement” strategies. Differentiation of PC12 cells on the PU substrates
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • (PBZT) and a 150 nm LNO as the top electrode were deposited. The wafer was patterned by a standard photolithographic process, starting with the application and patterning of the photoresist mask for defining the device areas. Subsequently, the excess PBZT and LNO were removed by a wet etching process
  • finalized by etching circular holes from the backside of the wafer to obtain thin membranes. The sizes of these holes were defined by applying and patterning a photoresist on the backside of the wafer, which was then anisotropically etched by deep reactive ion etching (DRIE) using SF6, O2, and C4F8 gases
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • microoptic fabrication, grayscale lithography offers a solution to mitigate the staircase effect. Grayscale lithography is a novel approach in photolithography for 2.5D patterning (x,y,z) with ultrasmooth surfaces that exhibits improved shape accuracy [57][58]. In 2019, Nanoscribe GmbH & Co launched the
PDF
Album
Perspective
Published 15 Aug 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • , Luxembourg Thermo Fisher Scientific, Hillsboro, OR, 97124, USA 10.3762/bjnano.14.68 Abstract Ion beam processes related to focused ion beam milling, surface patterning, and secondary ion mass spectrometry require precision and control. Quality and cleanliness of the sample are also crucial factors
  • years, the need to control what happens at the surface of the sample has risen sharply, specifically for semiconductors [3][4], microelectronics [5], and surface patterning [6][7]. Other applications of low-energy beams include the preparation of nanoholes [8][9]. Furthermore, deposition processes are
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • PMC simulation the overall flux seems to be much more homogeneous. A careful eye might also note some faint patterning in the colours of the PMC results. As the colour scale for Figure 7 spans a large range, we can look to a more convenient visualization in Figure 8. Here we have clipped the colour
PDF
Album
Full Research Paper
Published 15 May 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • -off lithography; gap; self-assembled monolayer; sub-micrometer; surface patterning; Introduction The development of lithographic techniques is crucial to the advancement of the electronics and semiconductor industry, the backbones of modern technology. Advances in photolithography have pushed the
  • be used to produce even smaller features with arbitrary shapes, but the serial nature of these practices forbids their suitableness for high volume productions [3][4]. Soft lithographic techniques are hybrid approaches which have been extensively studied as alternatives to achieve precise patterning
  • to allow high-resolution patterning over a large area. In addition to standard lithographic operations using this approach, the CLL process can also be applied to create functional molecular patterns by backfilling post lift-off regions with various molecules [20][21][22]. Interestingly, the CLL
PDF
Album
Full Research Paper
Published 04 Jan 2023

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • , patterning, and sensing, as a result of their advantageous characteristics [125]. Han and co-workers extracted cow milk-derived CDs (CM-CDs) from aqueous solution using ethyl acetate to create amphiphilic CM-CDs (ACMCDs). A unique ACMCD-Ag/polymethylmethacrylate antibacterial film was produced utilizing the
PDF
Album
Review
Published 05 Oct 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • , Luxembourg Thermo Fisher Scientific, Hillsboro, OR, 97124, USA 10.3762/bjnano.13.86 Abstract Focused ion beams (FIB) are a common tool in nanotechnology for surface analysis, sample preparation for electron microscopy and atom probe tomography, surface patterning, nanolithography, nanomachining, and
  • probe tomography (APT) [5], and ion beam analysis used for life sciences applications [6][7]), surface patterning [8], nanolithography [9], nanomachining [10][11], and nanoprinting at room [12] and cryogenic temperatures [13]. The development of nanotechnology relies on lower ion beam energies and
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • : C4 PMMA; Wafer 2: B2 PMMA). Both wafers started with the patterning of Cr/Au contacts (deposited by magnetron sputtering) using direct-write laser lithography and ion milling. The fabrication of the two wafers followed slightly different steps, as described below. Wafer 1: A stopping layer (Al2O3
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • was reproduced from [141], O. Dalstein et al., “Evaporation-Directed Crack-Patterning of Metal-Organic Framework Colloidal Films and Their Application as Photonic Sensors”, Angewandte Chemie International Edition, with permission from John Wiley and Sons. Copyright © 2017 Wiley-VCH Verlag GmbH & Co
PDF
Album
Review
Published 12 Aug 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • ]. Although the results showed no appreciable difference between NMS and MS scaffolds in terms of inducing redifferentiation, nanoscale patterning of the microfibers influenced cell proliferation. In another study, similar results were obtained regarding the effect of poly(ʟ,ᴅ-lactide) (PLDLA) microfibers or
PDF
Album
Review
Published 11 Apr 2022

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • light. The resist is sprayed or spin coated onto a substrate surface for patterning and is exposed to light (usually ultraviolet) either through a contact mask or using a projection stepper, followed by wet development to form a resist pattern. This technique requires well-established photosensitive
  • fabricated using reshaped photoresist technology to form a channel inside (Figure 5c). The microneedle had a 1500 μm long shaft with a 45° angle tapered tip and a 1000 μm long pedestal. The manufacture comprised of repetitive patterning of the substrates by electroplating metal layers with multiple
PDF
Album
Review
Published 13 Sep 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • of induced defects and number of implanted ions is limited in FIBs that are optimized for patterning applications (such as Ga FIB/SEM or HIM when operated with Ne). The highest concentration of ion implantation and defects is reached once the sample has been milled down to a depth which corresponds
  • ions/nm2 and 2247 ions/nm2 at a 0° incidence angle. An acceleration voltage of 25 kV is a commonly used operating parameter for patterning with neon and was chosen for that reason in these experiments. To achieve 30 keV Ne ions, the extractor would have to be raised to >37.5 kV which can lead to source
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • strength ε extends the domain of α and k∥ in which patterning is possible. Numerical simulations In order to perform numerical simulations of the process of pattern formation during deposition we will proceed in a manner closely related to [63][64]. We will solve numerically Equation 4 on a two-dimensional
PDF
Album
Letter
Published 13 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • traps that pin the Fermi level at the Dirac point. Later conductivity tuning of graphene went on to combine this irradiation-induced effect with the fine patterning capabilities of the HIM performing line irradiations across graphene with varying step sizes between dwell points [21]. This produced
  • disks was achieved by inhomogeneous irradiation using a concentric pattern with a higher dose on the outside, rather than using homogeneous irradiation [32] (Figure 2e). Nanoscale magnetic patterning of Co/Pt multilayers using a checkerboard helium ion irradiation pattern has also recently been
  • demonstrated [51]. Furthermore, tuning of the metamagnetic transition temperature of an FeRh thin film (from antiferromagnetic to ferromagnetic behavior) has been achieved by varying the helium ion dose from 1 × 1014 to 5 × 1015 ions/cm2, with the patterning of features down to 25 nm in size [52]. In a study
PDF
Album
Review
Published 02 Jul 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • corroborate that the h-BN monolayer is only weakly coupled to the Cu(111) surface as is evidenced by the large angular range of Moiré superstructures observed, which in turn leads to work function patterning. Using FER and KPFM maps we report a work function variation of 148 ± 17 and 86 ± 16 meV, respectively
PDF
Album
Letter
Published 17 Jun 2021
Other Beilstein-Institut Open Science Activities