Search results

Search for "photovoltaics" in Full Text gives 110 result(s) in Beilstein Journal of Nanotechnology.

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • Konstantinos Bidinakis Stefan A. L. Weber Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany 10.3762/bjnano.16.52 Abstract Selective charge transport layers have a
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • of Mainz, Staudingerweg 7, 55128 Mainz, Germany Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany 10.3762/bjnano.16.49 Abstract We present multifrequency heterodyne electrostatic force microscopy (MFH-EFM) as a novel electrostatic force microscopy
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • for various applications in photovoltaics, sensors, optoelectronics, and electronic devices. In the present work, Mo thin films with varying thickness of 150, 200, 250, and 300 nm were deposited on Si(100) substrates using radio frequency (RF) sputtering in an argon environment at ambient temperature
PDF
Album
Full Research Paper
Published 01 Apr 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • ETL, and NiO was used as HTL, with La2NiMnO6 as absorber [25]. The DPSC showed promising characteristics. Applications of double perovskite compounds include fuel cells, UV sensors, electrochemical sensors, indoor photovoltaics, and light-emitting diodes [26]. Double perovskite LNMO nanoparticles and
PDF
Album
Full Research Paper
Published 06 Feb 2025

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • –metal devices exhibiting blue and white electroluminescence [7][8]. It was found that these films exhibit photoconductive and photoelectric effects suitable for electroluminescence and photovoltaics applications [9][10], as well as for other applications such as solar cells and anodes for Li batteries
PDF
Album
Full Research Paper
Published 17 Dec 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • characteristics of group IV–VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer Ge2Se2 (a group IV–VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an
PDF
Album
Full Research Paper
Published 11 Sep 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • category of engineered NPs is comprised of metal and metal oxide NPs, which rank among the highest in production volume. They have already found widespread applications in technological advancements such as photovoltaics, catalysis, gas sensors, fuel cells, and adsorbents [7][8]. This prevalence is
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface

  • Niklas Humberg,
  • Lukas Grönwoldt and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2024, 15, 556–568, doi:10.3762/bjnano.15.48

Graphical Abstract
  • . They allow for electron transport along the long axes of the 1D aggregates, while a confinement effect is present along their short axes. Hence, they are considered as building blocks for new generations of devices for computing, photovoltaics, thermoelectrics, and energy storage [5][6][7]. Furthermore
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • range of tunability in structural, optical, and electrical properties of NS-WOx thin films through controlling microstructure and film thickness. This will be useful for optoelectronic applications in photovoltaics where such films are used as a carrier-selective contact. AFM height images of (a–d) as
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • architectures, that is, with and without an additional layer. The architecture with the higher efficiency proved to be the one without the PEDOT:PSS layer. Results demonstrated that quantum dots are emerging materials for photovoltaics and are an essential component of research to develop organic solar cells
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • inorganic films used extensively in photovoltaics, (nano)electronics, energy storage and catalysis [5][6][7][8]. Similarly to ALD, MLD is based on sequential self-limiting reactions of readily vaporized inorganic precursors but the second reactant is a highly volatile organic species. Thus, in contrast to
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • structures including metals [1], semiconductors [2][3][4], dielectrics [5][6][7], photovoltaics [8][9][10], polymers [11][12][13], ferroelectrics [14][15][16], and biological samples [17][18][19]. Technical descriptions and applications of KPFM methods for nanoscale material property characterizations are
PDF
Album
Full Research Paper
Published 06 Oct 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • are several requirements for materials to be eligible for application in the field of photovoltaics, such as high absorption performance, nontoxicity, abundance, efficiency, and low cost. As a semiconductor with a low band gap and a high absorption coefficient, antimony(III) sulfide (Sb2S3) has become
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • % for planar structures, respectively. The work, therefore, describes an environmentally friendly technology for PV architecture with surface textures increasing the efficiency of PV cells. Keywords: atomic layer deposition; hydrothermal method; photovoltaics; silicon; solar cell; zinc oxide
  • opens the way to the installation of “green” (i.e., environmentally friendly) sources of energy. Moreover, such sources are now economically justified, which is due to impressive reduction of their costs. Currently, the most important sources of green energy are photovoltaics (PV), wind generators, and
  • hydropower installations. Of these energy sources, the photovoltaics market is developing extremely dynamically. The growing interest in photovoltaics results not only in large installations (large solar farms), but also in small solarpower systems installed on residential buildings. According to a report
PDF
Album
Full Research Paper
Published 21 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • (Figure 1) by selectively tuning the donor and acceptor parts within the conjugated backbones [39][40]. The D–A architecture has been widely employed in high-performance organic optoelectronic devices, such as organic photovoltaics, organic field-effect transistors, nonlinear optics, and organic light
PDF
Album
Review
Published 30 Jun 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • ; gallium arsenide; photovoltaics; surface passivation; Introduction The atomic layer deposition (ALD) method is used for silicon passivation in photovoltaics. In recent years we proposed the usage of ALD for the construction of simplified Si-based cells [1]. Once zinc oxide (ZnO) nanorods were employed as
PDF
Album
Full Research Paper
Published 28 Jun 2021

Influence of electrospray deposition on C60 molecular assemblies

  • Antoine Hinaut,
  • Sebastian Scherb,
  • Sara Freund,
  • Zhao Liu,
  • Thilo Glatzel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2021, 12, 552–558, doi:10.3762/bjnano.12.45

Graphical Abstract
  • fragile molecules that are impossible to safely deposit onto surfaces with traditional deposition techniques. So far, using HV-ESD, numerous molecular species with potential applications in biology and photovoltaics, or with magnetic or thermal expansion properties have been deposited on a variety of
  • used as model surface in nc-AFM measurements [31][32][33][34], and, finally, NiO(001), a p-type wide-bandgap metal oxide with potential applications in photovoltaics [35][36][37]. For all cases, we show the typical C60 structures formed by TE and compare these with the results from HV-ESD. This allows
  • photovoltaics [47]. To date, only few SPM studies have focused on the adsorption of organic molecules on NiO surfaces [35][36][37]. Because organic dyes are large and complex molecules, their TE is impossible, making HV-ESD methods the only deposition technique compatible with fundamental studies. A first step
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • achieve control over the growth of molecular columns of CuPc molecules [40]. Metal phthalocyanines exhibit useful physical, chemical, and electronic properties. They are considered as promising candidates for practical applications in (opto)electronics and photovoltaics, for instance, in solar cells or
  • context of a future application in photovoltaics [58][59]. A few of the phthalocyanines with different central metal atoms exhibit magnetic properties [60] and thus attract growing attention. Having this in mind, we have sublimed FePc molecules on a Ge(001):H surface and studied the formation of molecular
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • , photovoltaics, and energy storage. In this context, supercapacitors are a major application of ZnO as electrode material. This contribution summarizes the results using all possible microscopic characterization techniques to detect ZnO defect structures, their role, and the effect of their concentration. The
PDF
Album
Review
Published 13 Jan 2021

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • fabricate large numbers of nanowires with high aspect ratio, perpendicular to a silicon substrate, that is, so-called silicon nanowire (SiNW) forests. The process is very suitable for the large-scale fabrication of nanostructured devices useful for several applications, such as sensing, photovoltaics
PDF
Album
Full Research Paper
Published 11 Nov 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • standing topics of various investigations because silicon is still the most widely used semiconductor material for a broad range of micro- and nano-electromechanical systems, microelectronics, and photovoltaics [1][2]. Silicon nanostructures, such as bottom-up-grown nanowires [3], were also synthesized
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • , among others, organic light-emitting diodes and organic photovoltaics. In particular, metal phthalocyanines (MPcs) have gained considerable interest as they offer flexibility in the modification of their optoelectronic properties through their molecular packing, which in turn is governed by substrate
  • –molecule interactions [1][2][3][4]. Nonplanar MPcs, such as lead phthalocyanine (PbPc), are particularly interesting in the field of photovoltaics due to their extraordinary near-infrared (NIR) absorption. The chemical structure of a PbPc molecule is given in Figure 1. The well-known polymorphs of
PDF
Album
Full Research Paper
Published 19 May 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • ; organic–inorganic hybrid materials; particle synthesis; semiconductors; transport across interfaces; Introduction Recently the class of hybrid perovskites attracted great attention in materials chemistry and physics [1][2][3]. In addition to an outstanding performance in photovoltaics, a peculiar feature
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • characterization of such materials may lead to additional challenges, where for some frequencies the carriers may not be able to respond fast enough to the intermittent interaction. Examples of such materials, which are often characterized with C-AFM, are those used in photovoltaics, which have very particular
PDF
Album
Full Research Paper
Published 13 Mar 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • ); organic photovoltaics; photocarrier dynamics; pump–probe configuration; time-resolved measurements; Introduction Many emerging photovoltaic technologies rely on the use of thin film materials displaying structural and/or chemical heterogeneities at the μm or nm scale. This is the case for solution
  • precise understanding of the relationship of the structural, chemical and optoelectronic properties of the device. Especially, a universal problem in third-generation photovoltaics consists in identifying the sources of carrier loss by the recombination of photogenerated charge carriers. This has prompted
  • less data points to probe the parts of the time-domain where the SP evolves more slowly. Organic BHJ Solar Cells In this work, PTB7:PC71BM BHJ photovoltaic thin films have been used as test samples (Figure 3) for pp-KPFM experiments. In the following, a few concepts of organic photovoltaics are
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020
Other Beilstein-Institut Open Science Activities