Search results

Search for "plasmon" in Full Text gives 303 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles

  • Shoronia N. Cross,
  • Katalin V. Korpany,
  • Hanine Zakaria and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2025, 16, 1504–1521, doi:10.3762/bjnano.16.106

Graphical Abstract
  • majority of the bound CySH is either coordinated to surface Fe through the amine, or possibly bound to 3,4-DHBA quinones through its thiol. The presence of a higher binding energy feature in the S 2p spectra at >166 eV is attributed to a Si 2s plasmon loss peak, derived from the Si substrate (Supporting
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
  • increasing surface area and inducing fracture planes. One of the few publications on the formation mechanism of gold SMPs [45] clearly depicts the laser irradiation mechanism and how the process of agglomeration affects the particle formation. Laser irradiation causes a redshift in the localized plasmon band
  • approximately 15 to 40 nanoparticles per μm2. The hybrid materials exhibited plasmon resonance absorption of the Au NPs. Shorter EPD times maintained the properties of graphene, while longer deposition times resulted in the conversion of graphene to graphene oxide due to its electrochemical oxidation [132
PDF
Album
Review
Published 27 Aug 2025

Photochemical synthesis of silver nanoprisms via green LED irradiation and evaluation of SERS activity

  • Tuan Anh Mai-Ngoc,
  • Nhi Kieu Vo,
  • Cong Danh Nguyen,
  • Thi Kim Xuan Nguyen and
  • Thanh Sinh Do

Beilstein J. Nanotechnol. 2025, 16, 1417–1427, doi:10.3762/bjnano.16.103

Graphical Abstract
  • candidates for surface-enhanced Raman scattering (SERS) due to their strong localized surface plasmon resonance and sharp tip geometry. In this study, AgNPrs were synthesized through a photochemical method by irradiating spherical silver nanoparticle seeds with 10 W green light-emitting diodes (LEDs; 520
  • , photochemical methods utilizing physical agents such as lasers [5], UV light [6], or LEDs [7][8][9] have gained attention due to their superior spatial and temporal control, high stability of the resulting AgNPrs and avoidance of environmentally unfriendly reducing agents [8][10]. The strong surface plasmon
  • ratio of the nanoprisms [4][15]. Therefore, the clear observation of the OPQ peak at 48 h suggests a significant contribution of nanoplate thickness to the overall surface plasmon resonance behavior, which could account for the blueshift of the IPD peak. After 72 and 96 h, the OPQ and IPQ peaks remained
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2025

Synthesis and antibacterial properties of nanosilver-modified cellulose triacetate membranes for seawater desalination

  • Lei Wang,
  • Shizhe Li,
  • Kexin Xu,
  • Wenjun Li,
  • Ying Li and
  • Gang Liu

Beilstein J. Nanotechnol. 2025, 16, 1380–1391, doi:10.3762/bjnano.16.100

Graphical Abstract
  • nanomaterials can be engineered to optimize their antimicrobial activity, making them versatile tools in the development of advanced membrane technologies. Quantum effects, such as localized surface plasmon resonance in metallic nanoparticles, can further enhance antimicrobial properties by generating reactive
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2025

Wavelength-dependent correlation of LIPSS periodicity and laser penetration depth in stainless steel

  • Nitin Chaudhary,
  • Chavan Akash Naik,
  • Shilpa Mangalassery,
  • Jai Prakash Gautam and
  • Sri Ram Gopal Naraharisetty

Beilstein J. Nanotechnol. 2025, 16, 1302–1315, doi:10.3762/bjnano.16.95

Graphical Abstract
  • [46][47][48]. LSFL formation is often attributed to the interference between incoming electromagnetic radiation and surface electromagnetic waves and involves surface polaritons and surface plasmon polaritons (SPPs). These SPPs propagate along the interface of the two media in which the electron
  • each wavelength and the periodicity achieved at that wavelength. These results reveal that the reorganization of the material or the plasma created by the femtosecond lasers play an important role in forming LIPSS, along with the electromagnetic interactions of the surface plasmon modes. Furthermore
PDF
Album
Full Research Paper
Published 11 Aug 2025

Better together: biomimetic nanomedicines for high performance tumor therapy

  • Imran Shair Mohammad,
  • Gizem Kursunluoglu,
  • Anup Kumar Patel,
  • Hafiz Muhammad Ishaq,
  • Cansu Umran Tunc,
  • Dilek Kanarya,
  • Mubashar Rehman,
  • Omer Aydin and
  • Yin Lifang

Beilstein J. Nanotechnol. 2025, 16, 1246–1276, doi:10.3762/bjnano.16.92

Graphical Abstract
PDF
Album
Review
Published 05 Aug 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • melting. This indicates that residual effects from the initial electron dynamics play a dominant role in influencing ionic dynamics at later stages, persisting for several to tens of picoseconds. Localized surface plasmon formation in metallic NPs, followed by their annihilation, have been identified as
  • other than purely thermal effects. Among these are electron emission [109], near-field forces of the plasmon resonance on the surface, pressure effects due to an expanding electron gas [25][27], or spatial spreading of fast electrons [110][111]. In general, with femtosecond excitation a large fraction
  • approaches [115]. The subsequent pressure and temperature conditions emanate from the close interaction of the excited particles with the medium. The width of the SPR reflects the coherence time of this oscillation. This dephasing time amounts to a few femtoseconds, leading to a plasmon resonance width of
PDF
Album
Review
Published 02 Jul 2025

Synthesis of biowaste-derived carbon-dot-mediated silver nanoparticles and the evaluation of electrochemical properties for supercapacitor electrodes

  • Navya Kumari Tenkayala,
  • Chandan Kumar Maity,
  • Md Moniruzzaman and
  • Subramani Devaraju

Beilstein J. Nanotechnol. 2025, 16, 933–943, doi:10.3762/bjnano.16.71

Graphical Abstract
  • evidenced from the progressive color change of the solution as shown by surface plasmon resonance (SPR). Structural and morphological analysis The optical properties of PG-CDs and PG-CDs-AgNPs were studied using UV–visible spectroscopy and photoluminescence (PL) spectroscopy. An absorption peak at 275 nm
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • ., CSF and blood tests [54]. Researchers have also employed the surface plasmon resonance (SPR) of citric acid-coated AuNPs, to specifically detect and quantify Aβ40 oligomers, as the SPR absorption band of AuNPs was found to be sensitive to the presence of AβOs [55]. While exploring the range of AβO
PDF
Album
Review
Published 22 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • production of Mo nanoparticles and the subsequent increase in surface plasmon resonance or interband transitions. As-deposited molybdenum thin films deposited at room temperature typically exhibit a smooth surface and crystalline structure. The absorbance of molybdenum thin films increases with increasing
  • film thickness and peaks between 300 and 700 nm, corresponding to the localized surface plasmon resonance (LSPR) of molybdenum nanoparticles [45][46]. The formation of defects through ion irradiation increased the scattering of light and absorption within the film, resulting in enhanced overall
PDF
Album
Full Research Paper
Published 01 Apr 2025

Effect of additives on the synthesis efficiency of nanoparticles by laser-induced reduction

  • Rikuto Kuroda,
  • Takahiro Nakamura,
  • Hideki Ina and
  • Shuhei Shibata

Beilstein J. Nanotechnol. 2025, 16, 464–472, doi:10.3762/bjnano.16.35

Graphical Abstract
  • the change in the absorption peak at 520 nm in the UV–vis absorption spectrum caused by the localized surface plasmon resonance (LSPR) of the Au nanoparticles as a function of the laser irradiation time. The black line shows the change in absorbance for the solution without IPA, and the red line shows
PDF
Album
Full Research Paper
Published 27 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • , the plasmon peak significantly decreased due to a lower number of nanoparticles, and their corresponding color significantly changed compared to the control value. This suggests that nanoparticle concentration plays a significant role in determining the nanoparticle–Bradford reagent interaction for
  • spectrophotometric methods. Specifically, when combined with the Bradford reagent, the PEG–PCL nanoparticles produced a distinct blue color, indicating a successful interaction. This interaction generated a sharp plasmon resonance peak with a maximum absorbance (λmax) at 620 nm. Further, the addition of SDS to PEG
  • nanoparticles showed a selective response to SDS. Specifically, only in the presence of SDS a significant redshift of approximately 30 nm was observed in the plasmon resonance peak. This redshifting of absorbance maximum to a longer wavelength is a unique response not seen with the other tested ions or
PDF
Album
Full Research Paper
Published 20 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • ns, 532 nm, and 87 mJ·cm−2 pulses. We employed 532 nm pulses because gold nanoparticle generation works well at that wavelength, as nanoparticle nucleation and growth take advantage of this laser wavelength being resonant with the surface plasmon resonance in gold nanoparticles [25]. For 532 nm
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • ). Supporting Information File 1, Figure S1a, reveals the appearance of characteristic bands around 230 nm and 295 nm for GO which corresponds to π–π* and n–π* electronic transitions, respectively. The observed high intensity π–π* plasmon peak around 230 nm is attributed to well-defined nanoscale sp2 hybrid π
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • -spectroscopy (Supporting Information File 1, Figure S1 and Figure S5) at the wavelength of the plasmon resonance peak (for Au and Ag) or at the wavelength of 550 nm (for Cu, Fe, Al, and Ti). The extinction at a wavelength of 550 nm for copper was used because the plasmon resonance peaks were not always
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • categorized into three distinct types based on their different photothermal conversion mechanisms, which arise from their unique electronic structures [23][24]. The types include metals exhibiting localized surface plasmon resonance (LSPR), carbon and polymer materials undergoing molecular thermal vibration
  • materials initiate photothermal conversion through localized surface plasmon resonance (LSPR), characterized by absorption at a single wavelength [48][49][50]. The therapeutic process involves mechanical forces generated by the rupture of vapor nanobubbles, effectively treating tissues or cells. (d–f
PDF
Album
Review
Published 17 Feb 2025

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • properties [3][11][12]. These include localized surface plasmon resonance (LSPR), which can be utilized to detect heavy metal ions. The catalytic properties can be applied to degrade nitrophenolic compounds such as P-NP. Also, it is well documented that the properties of silver nanoparticles can be modulated
  • purification. Before the experiment, glassware was cleaned with aqua regia and rinsed twice with double distilled (DD) water. Methods Tunable plasmonic silver nanoparticle synthesis using ʟ-carnosine Silver nanoparticles with tunable plasmon wavelength were synthesized using a wet-chemical reduction approach
  • . ʟ-Carnosine-capped silver nanoparticles were prepared in the presence of NaBH4, a strong reductant. The synthesized ʟ-carnosine-capped silver nanoparticles were named according to their increasing order of plasmon peaks, that is, ʟ-car-AgNP1, ʟ-car-AgNP2, ʟ-car-AgNP3, ʟ-car-AgNP4, and ʟ-car-AgNP5. ʟ
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • and complex operational procedures [21]. Colorimetric detection of heavy metals and catalytic conversion of 4-nitrophenol can be achieved using CTAB-capped gold or silver nanoparticles because of their unique surface plasmon resonance (SPR) properties, allowing for a colorimetric analysis through a
  • CTAB-AuNR2, centrifuged and as-prepared, respectively. The catalytic conversion of 4-NP to 4-AP was measured using a UV–vis spectrophotometer at 300–900 nm. The disappearance of the color upon adding nanoparticles was measured and further, the change in the plasmon band was recorded. As controls, we
  • TEM analyses Physicochemical characterization was performed using optical spectroscopy, DLS, FTIR, XRD, and TEM analyses. Figure 2a shows the synthesized isotropic silver and gold nanospheres with plasmon bands at 410 nm (AgNS) and 525 nm (AuNS). The anisotropic tunable gold nanorods with longitudinal
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • temperature, and the reaction time, by using UV–vis spectroscopy. Changes in the physicochemical properties, such as morphology and particle size of AuNPs, were monitored through absorbance and the λmax values of the surface plasmon resonance (SPR) band. Figure 2 illustrates the impact of synthesis conditions
PDF
Album
Full Research Paper
Published 04 Oct 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • was meticulously evaluated by analyzing the ablation rates, surface plasmon resonance peak positions, and particle size distributions of the obtained colloids. The nanoparticles (NPs) were characterized using the techniques of UV–visible absorption, transmission electron microscopy, and energy
  • solution, covering a wavelength range of 300–800 nm. In Figure 1, the optical absorption spectra of (a) Ag, (b) Au, and (c) Ag/Au NP solutions are presented for both environments obtained at 1064, 532, and 355 nm wavelengths in LASiS. All absorption spectra exhibit a distinct single surface plasmon
  • resonance (SPR) absorption peak, indicating the formation of spherical NPs. The SPR peak of Ag/Au alloy NPs lies between the SPR peak positions of pure Ag and Au NPs. Notably, the plasmon bands of NPs obtained at lower wavelengths (355 and 532 nm) are broadened compared to those of NPs fabricated at higher
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • hydrogels is not well reported. In this study, nanomakura-shaped anisotropic gold nanoparticles (AuNMs) were synthesized via a surfactant-assisted seed-mediated protocol. Quaternary cationic surfactants having variable carbon tail length (n = 16, 14, 12) were used as capping for tuning the plasmon peak of
  • gold nanomakura within a 600–700 nm wavelength. The aspect ratio as well as anisotropy of synthesized gold nanomakura can influence photothermal response upon near-infrared irradiation. The role of carbon tail length was evident via absorption peaks obtained from longitudinal surface plasmon resonance
  • . Plasmon resonance in spherical nanoparticles can be stretched over a relatively small wavelength range by changing the diameter, whereas casting anisotropy serves an extra degree of freedom for controlling the plasmon band over a range of visible to infrared (IR) spectrum [4]. Gold nanoparticles are well
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection

  • Le Hong Tho,
  • Bui Xuan Khuyen,
  • Ngoc Xuan Dat Mai and
  • Nhu Hoa Thi Tran

Beilstein J. Nanotechnol. 2024, 15, 426–434, doi:10.3762/bjnano.15.38

Graphical Abstract
  • of plasmonic materials, which extensively respond to electromagnetic waves with proper wavelengths in terms of free electrons resonating to the incident waves [9][15]. This is the fundamental principle of surface plasmon resonance (SPR). Moreover, plasmons are easily controlled at the nanoscale
  • through different sizes, shapes, and surface morphologies of nanoparticles [16]. At the contacts among adjacent nanoparticles, so-called “hot spots” form; here, electromagnetic fields are effectively enlarged, leading to localized surface plasmon resonance (LSPR) [1][17]. Crucial parts of SERS-based
PDF
Album
Full Research Paper
Published 16 Apr 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • zinc oxide nanorods embedded within the PAAO template [13]. Recently, it was demonstrated that the PAAO thickness tuning can increase the signal intensity and refractometric sensitivity of localized surface plasmon resonance (LSPR) sensors constructed using gold nanoparticles, which are deposited on
PDF
Album
Full Research Paper
Published 31 Jan 2024

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • assays (LFAs) are currently the most widely used point-of-care testing technique with remarkable advantages such as simple operation, rapid analysis, portability, and low cost. Traditionally, gold nanoparticles are employed as tracer element in LFAs due to their strong localised surface plasmon resonance
  • , before being captured by immobilized biomolecules on a test line in the nitrocellulose membrane [6][7]. In conventional LFAs, most commonly gold nanoparticles and coloured cellulose nanobeads have been used as tracer elements because of strong light absorption and surface plasmon resonance, which yield
  • nanoparticles are exposed to light of a specific wavelength, they undergo coherent oscillation of surface electrons, leading to the production of thermal energy and enhanced electromagnetic signals. This phenomenon is known as localized surface plasmon resonance (LSPR), which has been recognized as a reliable
PDF
Album
Review
Published 04 Oct 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • doublet has the typical shape of cobalt in the metallic state, including two additional plasmon loss peaks (at 780.9 and 786.4 eV) and a LMM Auger transition peak at 770.8 eV [43]. The 2p3/2 peak maximum is located at 777.5 eV matching the reference value of Tan et al. [38] for metallic cobalt. This shows
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023
Other Beilstein-Institut Open Science Activities