Search results

Search for "porosity" in Full Text gives 232 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • and creating a high density of graphitic edges on the surfaces of carbon fibers [22]. Our process provides a carbon support material with retained porosity that does not slow mass transport in electrode processes [22], with a high surface area of carbon of 468 cm2 per geometric cm2 [23], derived from
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • sensitive compounds [3]. Electrospun nanofibers exhibit a large surface area, high porosity, and small pore size, making them useful for a wide range of applications, as shown in Figure 1. Chitosan/polyvinyl alcohol (PVA) electrospun nanofibers have many applications, including water treatment, biomedical
  • uses, and wound healing [4][5][6]. However, a drawback of electrospun nanofibers is their mechanical properties [7][8]. Electrospun nanofibers typically exhibit poor mechanical properties due to their high porosity, random fiber arrangement, and weak interactions at the cross-points of the nanofibers
  • mimicking the nanomechanical and nanostructural features of the ECM with their ability to withstand load-bearing applications, given their high porosity. Additionally, conventional electrospun fibers cannot withstand 150 MPa, which is a requirement for load-bearing applications. Thus, a more robust method
PDF
Album
Review
Published 26 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • using 16S rRNA gene sequencing, followed by analysis to construct a phylogenetic tree. nHA was found to meet the required quality criteria, exhibiting a spherical morphology with an average particle size of 68 nm and a porosity of 54.78%. The nHA carrier demonstrated favorable physical attributes to
  • results reveal an average particle size of 68.08 nm, as displayed in Figure 3b. Moreover, a more comprehensive examination of the SEM image using OriginLab software yields a sample porosity of 54.78%, as illustrated in Figure 3d. In this representation, the blue regions correspond to the solid volume of
  • nm. SEM analysis revealed a spherical shape with an average particle size of 68.08 nm and a porosity of 54.78%. Rhizobacteria loaded onto the nHA carrier exhibited viability comparable to rhizobacteria incubated without a carrier. Over the observation period, the viability of both types of
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
PDF
Album
Supp Info
Review
Published 12 Feb 2025

TiO2 immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites

  • Marina G. Shelyapina,
  • Rosario Isidro Yocupicio-Gaxiola,
  • Gleb A. Valkovsky and
  • Vitalii Petranovskii

Beilstein J. Nanotechnol. 2025, 16, 128–140, doi:10.3762/bjnano.16.12

Graphical Abstract
  • hydrolysis medium. Keywords: 2D zeolite; hierarchical porosity; mordenite; TEOT; TiO2; titanium tetraethoxide; Introduction Zeolites are important heterogeneous catalysts in various industrial processes. More and more functional materials based on zeolites are being searched for, including zeolites with
  • composites. With an increase hydrolysis duration in the presence of ethanol, first, there is a sharp decrease in porosity. Then, there is an increase to almost the same value as it was after the minimum processing time, which may be due to the formation of microporous zeolite. The decrease in specific
PDF
Album
Full Research Paper
Published 10 Feb 2025

Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates

  • Norma Salvadores Farran,
  • Limin Wang,
  • Primoz Pirih and
  • Bodo D. Wilts

Beilstein J. Nanotechnol. 2025, 16, 1–10, doi:10.3762/bjnano.16.1

Graphical Abstract
  • template has a similar refractive index as the titania thin layers obtained with a sol–gel process, suggesting a similar porosity despite the more complicated geometry. The work further supports the use of biological photonic structures for synthesizing novel optical devices. Results Appearance and
  • templating process employed here, the 3D geometry did not significantly increase the porosity of titania. Our estimate for the effective refractive index of titania in the 3D lattice is in the range reported for pure titania thin films (1.95–2.55 [38], 1.72–2.03 [39]), hybrid silica/titania thin films (1.95
  • the effective refractive index of titania thin films produced by sol–gel synthesis varies because of porosity, depending on the specific process, chemicals, and reaction conditions [41]. A higher annealing temperature seems to have a large influence on reducing the porosity of thin films, while
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2025

Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection

  • Thi Kim Ngan Nguyen,
  • Tien Dat Doan,
  • Huy Hieu Luu,
  • Hoang Anh Nguyen,
  • Thi Thu Ha Vu,
  • Quang Hai Tran,
  • Ha Tran Nguyen,
  • Thanh Binh Dang,
  • Thi Hai Yen Pham and
  • Mai Ha Hoang

Beilstein J. Nanotechnol. 2024, 15, 1522–1535, doi:10.3762/bjnano.15.120

Graphical Abstract
  • sensor was presented by You et al. in 2002 [22]. MOFs are crystalline hybrid materials with network structures formed by the self-assembly of metal ions or metal clusters and organic ligands, which give them ultrahigh porosity and enormous internal surface area. However, using MOFs for electrochemical
PDF
Album
Full Research Paper
Published 28 Nov 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • stability, porosity, and degradation rate of alginate-based nanoparticles in order to enhance their sensing capabilities. Additionally, efforts should be made to explore the potential of alginate-based nanoparticles for detecting a wide range of environmental pollutants, such as heavy metals and pesticides
PDF
Album
Review
Published 22 Aug 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • because of their extremely large surface area-to-volume ratio, small pore size, and high porosity. Nanofibers are known to be highly functional systems with the ability to mimic the structure and function of the natural bone matrix, facilitating osteogenesis for cell proliferation and bone regeneration
  • mixed polymers, and the formation of highly porous and continuous fibers are the remarkable features of this method. The importance of nanofiber-based scaffolds in bone tissue regeneration is increasing because of suitable pore size, high porosity, osteoinduction, induction of bone growth with
  • , and help bone resistance [13][14][15]. It is also assumed that an increase in the porosity of compact bone due to enlarged canals or an increased number of canals may be associated with increased bone fragility [16]. Unlike compact bone, cancellous bone does not have a Haversian system. Instead, an
PDF
Album
Review
Published 25 Jul 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • ]. Additionally, iron oxides were considered as iron precursors required to make MIL-100(Fe). The first candidate Fe3O4 was used to successfully fabricate MIL-100(Fe) in a hydrothermal reactor in the absence of HF and HNO3 [26][27]; it resulted in enhanced porosity of the obtained material when increasing the
  • , using the Brunauer–Emmett–Teller (BET) model, and the total pore volume and pore size distribution, using the Horvath–Kawazoe (HK) model. The samples were activated under vacuum at 150 °C for 12 h before being introduced into the porosity analyzer. CO2 and N2 adsorption test The characteristic
  • , respectively. Subsequently increasing the H3BTC amount up to 1.80 g caused an improvement in BET surface area to 1365.4 m2·g−1 and total pore volume to 0.642 cm3·g−1 for M-100Fe@Fe2O3#1.80. There was a further slight enhancement in the porosity of the obtained material when increasing the H3BTC amount from
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • , resulting in the fabrication of metal oxide nanostructures. Post-deposition purification requires the removal of carbon after completion of the deposition, causing porosity and/or severe changes in size and shape. In addition, post-deposition purification may lead to only partly purified material. For
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • several descriptors that reflect the nanoform’s shape and size, such as its area, volume, surface, diameter, volume/mass ratio, volume/surface ratio, aspect ratio, porosity, sphericity, and circularity [30]. However, the most common approach is to provide a single size parameter and assume that the
PDF
Album
Supp Info
Review
Published 11 Jul 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • has several functions in the human body, including wound healing [15][16]. Nanofibers produced by electrospinning have beneficial structural attributes, such as elevated porosity, high specific surface area, and nanoscale fiber dimensions; thus, adequately mimicking the ECM and promoting cellular
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • with ultrahigh degree of porosity, the so-called aeromaterials, are of special interest [11][12][13][14][15][16][17][18]. Aeromaterials are similar to aerogels, which are widely explored and used in various applications. Aerogels include inorganic [19][20][21][22][23][24], organic [21][22][23][24][25
PDF
Album
Full Research Paper
Published 02 May 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • diffusion rate of adsorbed contamination is known to be enhanced by the presence of water layers [21]. But since the relevant quantities are hard to measure, the diffusion rate has not been included in the model, nor have some other factors such as scattering, porosity, and secondary etch product reactions
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • − 0.76f for the visible band [4], where f is the porosity. In the present work, a RI value of 1.40 ± 0.01 at 600 nm was obtained for the porous layer in air using SE fitting, while the corresponding value for the barrier layer was 1.768 according to the SE software database for aluminum oxide. During
PDF
Album
Full Research Paper
Published 31 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • researchers due to their unique characteristics. First, high porosity and large surface-to-volume ratio of nanofiber scaffolds give the material the potential to be exposed to the biological media for drug release. Besides, 3D nanofiber scaffolds resemble the natural extracellular matrix, promoting nutrients
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • scaffold, coating its surface. The characteristic porous structure is still formed but has a much more granular structure. The presence of pores is very important in the case of the application of hydrogel composite in OER. As aforementioned, the porosity has a beneficial effect on the diffusion of
  • influence of porosity and conductive properties of these composites on the electrochemical activity of catalyst particles in OER. Elemental mapping by energy-dispersive X-ray spectroscopy (EDS) confirmed the presence of MCO particles inside the hydrogel structure (Figure 2 and Supporting Information File 1
  • cCB in the hydrogel-MCO structure. For the studied materials, CPE can be linked to a surface distribution of properties, related to the material roughness and the porosity of the films. In general, α values correlate with the observed behaviour of the corresponding Q parameters (Table 1). Therefore
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • , directly linked to the rise in global temperature, has raised significant attention. Carbon capture and storage, particularly in association with adsorbents, has occurred as a pivotal approach to address this pressing issue. Large surface area, high porosity, and abundant adsorption sites make metal
PDF
Album
Review
Published 20 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • architectures, pronounced porosity, abundant active sites, and well-distributed metallic nodes. This article commences by elucidating the mechanistic aspects of CO2 reduction, followed by a comprehensive exploration of diverse materials encompassing MOFs based on nickel, cobalt, zinc, and copper for efficient
  • [28][29][30], and biomedical [31] applications. These materials are distinguished by their exceptional attributes, including a substantial specific surface area, pronounced porosity, and modifiable chemical structures [32]. Within the catalytic domain, MOFs demonstrate catalytic activity stemming from
PDF
Album
Review
Published 31 Aug 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • -VEHICLE and NLC-BNZ, the latter exhibiting a higher HA, could be explained by adding the HA of the free drug to the effect of the vehicle on erythrocytes. More studies would be necessary to investigate the effect of the composition, size, or porosity of these nanoparticles after a long term exposure to
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical
  • wide linear detection range with a detection limit of 0.05 μM. Due to the synergistic effects of the wide porosity and high specific surface area of the MOF and the outstanding catalytic activity and high conductivity of Ag nanoparticles, the hybridisation improved the electrochemical performance of
  • ][101]. Numerous early MOFs produced from divalent metals displayed excellent porosity but were inappropriate for
PDF
Album
Review
Published 01 Jun 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • metal structures can still be discerned. In contrast, the PLD coating formed metal structures with a more complex morphology that shows sharp edges, spikes, and overall porosity. Such diversified morphology of plasmonic metals (shape and distance between particles) is known to introduce more hot spots
PDF
Album
Full Research Paper
Published 03 May 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • as stiffness and abrasion resistance to help the growth of the entrapped cells. In addition, control of the porosity of the involved inorganic materials is key to control efficiently the exchange of metabolites and nutrients with the surrounding environment. In this context, the present contribution
  • cyanobacteria and yeast cells. On the one hand, sepiolite clay mineral was used for the immobilization of these microorganisms taking into account that this natural microfibrous Mg silicate presents a wide range of porosity, the ability to generate very viscous stable dispersions, and the capability to form
  • , 7.5% silica nanoparticles, and 4 °C). A possible explanation could be that in the preparation of this gel, a medium concentration of silicate was used, which reacts sufficiently slowly at 4 °C to allow for bonding of the silica nanoparticles, generating a network of high porosity. Visually, the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • ratio, high porosity, and high mass transport. Therefore, they are often applied to SSG absorbers along with other macrostructures such as membranes and foams [29][52][53][54][55]. One noticeable example is the study of nanofiber-based light-trapping coatings [29]. Ma et al. proposed an ultrasonic spray
PDF
Album
Review
Published 04 Apr 2023
Other Beilstein-Institut Open Science Activities