Search results

Search for "ultrahigh vacuum" in Full Text gives 163 result(s) in Beilstein Journal of Nanotechnology.

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • 10.3762/bjnano.15.115 Abstract Ion beam-induced deposition (IBID) using Pt(CO)2Cl2 and Pt(CO)2Br2 as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed
  • sublimes at 35–40 °C at 125 mTorr. 13C NMR (C6D6, 400 MHz) δ 151.71 (1JC–Pt = 1562 Hz); IR (toluene, Figure S1, Supporting Information File 1) νco: 2077, 2118 cm−1. UHV studies Experiments were performed in a stainless-steel ultrahigh vacuum system as described elsewhere [21]. Briefly, a cooled tantalum
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • ) substrates were prepared by immersing them in a methanol bath at a temperature of 60 °C and drying them in N2 gas flow. Subsequently, the purified substrates were moved into an ultrahigh vacuum (UHV) chamber and underwent a pre-heating process at 600 °C for 30 min in order to eliminate any remaining
PDF
Album
Full Research Paper
Published 14 Oct 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • bandgap [12], which is also related to the work function. GNRs can be synthesized with atomic precision in an ultrahigh-vacuum environment using on-surface synthesis [13]. This synthesis is well known on coinage metals, namely, Cu, Ag, and Au, which possess a high electron density. To study these unique
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Signal generation in dynamic interferometric displacement detection

  • Knarik Khachatryan,
  • Simon Anter,
  • Michael Reichling and
  • Alexander von Schmidsfeld

Beilstein J. Nanotechnol. 2024, 15, 1070–1076, doi:10.3762/bjnano.15.87

Graphical Abstract
  • dominated by higher-frequency oscillations. Exemplary waveforms are shown schematically below in Figure 4. Results and Discussion The interferometer used for our experiments is part of a custom-built NC-AFM, operated under ultrahigh-vacuum (UHV) conditions [14]. The cantilever is a highly reflective (Rc
PDF
Album
Full Research Paper
Published 20 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • was monitored in ultrahigh vacuum by mass spectrometry, leading to the detection of both gaseous CO and CH4 species [45]. The production of these two volatile species is ascribed to two different processes: (i) for CH4 the removal of trapped species and (ii) for CO the electron-induced hydration of
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Electron-induced ligand loss from iron tetracarbonyl methyl acrylate

  • Hlib Lyshchuk,
  • Atul Chaudhary,
  • Thomas F. M. Luxford,
  • Miloš Ranković,
  • Jaroslav Kočišek,
  • Juraj Fedor,
  • Lisa McElwee-White and
  • Pamir Nag

Beilstein J. Nanotechnol. 2024, 15, 797–807, doi:10.3762/bjnano.15.66

Graphical Abstract
  • . Interesting differences also appear when this precursor is compared to structurally similar iron pentacarbonyl. The present findings shed light on the recent electron-induced chemistry of Fe(CO)4MA on a surface under ultrahigh vacuum. Keywords: electron collision; focused electron beam-induced deposition
  • ultrahigh-vacuum conditions [8]. The deposits had an Fe/C/O composition similar to those obtained from Fe(CO)5, which was surprising since the methyl acrylate ligand has a high carbon content. This opens a fundamental question of how much can a change in one ligand change the outcome of electron-induced
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements

  • Laurent Nony,
  • Sylvain Clair,
  • Daniel Uehli,
  • Aitziber Herrero,
  • Jean-Marc Themlin,
  • Andrea Campos,
  • Franck Para,
  • Alessandro Pioda and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2024, 15, 580–602, doi:10.3762/bjnano.15.50

Graphical Abstract
  • little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature
  • ; thermal noise; ultrahigh vacuum; Introduction Since the 2000s, non-contact atomic force microscopy (nc-AFM) has established itself as a scanning probe method for the topographical, chemical, and electrical mapping of the surface of a sample down to the atomic scale [1][2][3]. When used in an ultrahigh
  • -vacuum (UHV) system and at, or close to, liquid helium temperature (4–10 K, LT UHV), the method allows for the direct characterization of individual molecules with intramolecular contrast [4], opening up the field of studying on-surface reactions [5] or tip-induced chemistry [6]. The method also makes it
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface

  • Niklas Humberg,
  • Lukas Grönwoldt and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2024, 15, 556–568, doi:10.3762/bjnano.15.48

Graphical Abstract
  • temperatures, the periodic step edges lead to a preferential growth of two distinct orientations out of four. Furthermore, we observed the growth of one, hitherto not described, azimuthal chain orientation parallel to the Ag step edges. Experimental The experiments were conducted in an ultrahigh vacuum chamber
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
  • [5]. Notably, when the FEBID process is performed under ultrahigh vacuum (UHV) conditions instead of the usual high vacuum conditions prevalent in SEMs, deposits with purities up to 95 atom % Fe can be obtained from Fe(CO)5 [21]. Also, the well-controlled environment of such UHV studies revealed that
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • the magnetization of the Co1 layer. The layers were deposited using electron beam evaporation (Co, Pb) and AC sputtering (Si3N4). The deposition setup had a load-lock station with vacuum shutters, allowing one to transfer the sample holder without breaking the ultrahigh vacuum in the deposition
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • of defects. Experimental A combined STM-AFM was operated in ultrahigh vacuum (5 × 10−9 Pa) and at low temperature (5 K). Surfaces of Ir(111) were cleaned by Ar+ ion bombardement and annealing. The epitaxial growth of graphene proceeded by exposing the heated (1300 K) Ir(111) surface to the gaseous
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • monocrystalline silicon. A WITec Alpha 300 M+ spectrometer with a 488 nm laser, 600 groove grating, and a 100× ZEISS objective was used for Raman measurements. The samples were deposited on a glass substrate. Ultraviolet photoelectron spectroscopy (UPS) was conducted in an ultrahigh-vacuum chamber with a base
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

unDrift: A versatile software for fast offline SPM image drift correction

  • Tobias Dickbreder,
  • Franziska Sabath,
  • Lukas Höltkemeier,
  • Ralf Bechstein and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2023, 14, 1225–1237, doi:10.3762/bjnano.14.101

Graphical Abstract
  • velocity. In Figure 4a,b, we show two consecutive AFM images of a calcium fluoride (111) surface recorded under ultrahigh vacuum conditions. The periodic structures observed in these two raw-data images (see red unit cells in Figure 4a,b) show a striking difference compared to each other and compared to
  • optimized lattices as found by unDrift are shown as red lines. Only the centers of the autocorrelations are shown. (a, b) Two consecutive up images recorded with high-resolution AFM on calcite(10.4) in ultrahigh vacuum. The images show several defects, whose positions are marked with colored crosses in both
  • the corresponding drift-corrected images are shown on the right side. In all images, the unit cell used for drift correction is shown as a red quadrangle. Images (a–d) show the atomic structure of calcium fluoride (111) recorded with high-resolution AFM in ultrahigh vacuum. Images (e–h) and (j–m) were
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • composition and morphology of FEBID deposits fabricated in an ultrahigh-vacuum (UHV) chamber were explored on different surfaces and at varied beam currents. In the gas phase, dissociative ionization was found to lead to significant carbon loss from this precursor, and about 50% of the chlorine was on average
  • ; quantum chemical calculation; ultrahigh vacuum; Introduction In recent years, gold nanostructures have received much attention owing to their dielectric properties [1], their biocompatibility [2], and their electrical properties [3][4], which enable a multitude of exciting applications in the field of
  • . [26] under the term focused-electron-beam-induced mass spectrometry (FEBiMS). In this approach, ion-extraction mass spectrometry, in close proximity to the forming FEBID structure, is used to analyze the charged, desorbing ligand fragments. Another approach in this direction is to combine ultrahigh
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • applications of KPFM are extremely broad. It is now used by physicists, chemists, and biologists to characterize the nanoscale electronic/electrostatic properties of an ever-expanding range of materials, interfaces, and devices, in ambient conditions, under ultrahigh vacuum, or at the liquid–substrate
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • flat conducting substrates, such as metal surfaces and highly oriented pyrolytic graphite (HOPG), under ultrahigh vacuum (UHV) conditions, at solid/air or solid/liquid interfaces [23][24][25][26][27][28]. Although UHV-STM offers high-resolution imaging, it requires large, complex, and expensive
PDF
Album
Review
Published 23 Aug 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • attachment of NHCs to gold and the properties of the corresponding monolayers have been studied using conventional surface science techniques under ultrahigh-vacuum conditions [13][14]. NHC monolayers have also been used in applications such as surface-enhanced Raman spectroscopy and surface plasmon
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • paragraph, KPFM measurements can be performed in ultrahigh vacuum (UHV) at an optimal surface–tip distance of the order of a few nanometres [34] with particular attention to the sample preparation either in the deoxidation and cleaving process. Effect of the illumination on the VCPD In the Results section
PDF
Album
Full Research Paper
Published 14 Jun 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • obtained on an ultrahigh vacuum spectrophotometer at a pressure below 1.1 × 10−8 mbar at room temperature (Omicron NanoTechnology). Photoelectrons were detected by a spectrophotometer equipped with a 128-channel collector. The X-ray anode was operated at 15 keV and 300 W. The chemical composition
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • coherent bimodal drive to amplify the signal of the fundamental mode. Both increase the signal-to-noise ratio of the measurement, creating opportunity for either improved sensitivity or increased speed. Furthermore, sideband cooling has a secondary use in ultrahigh-vacuum AFM as a tool for controlling the
PDF
Album
Full Research Paper
Published 19 Jan 2023

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • Measurements were carried out in a He-bath scanning probe microscope (CreaTec Fischer & Co. GmbH) and were acquired in ultrahigh vacuum at 5.6 K. Ag(111) (Mateck GmbH) was prepared with standard sputter and anneal cycles. The PTCDA and CuPc were evaporated from a custom-built evaporator. A detailed description
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • properties using multifrequency and multimodal AFM operation modes. Research of new quantum materials and devices, however, often requires low temperatures and ultrahigh vacuum (UHV) conditions and, more specifically, AFM instrumentation providing atomic resolution. For this, AFM instrumentation based on a
  • , but also perform rapid overview scans with the tip kept at larger tip–sample distances for robust imaging. Keywords: atomic force microscopy; atomic resolution; instrumentation design; multimodal operation; ultrahigh vacuum; Introduction Atomic force microscopy (AFM) operated under vacuum or
  • ultrahigh vacuum (UHV) conditions is beneficial for increasing measurement sensitivity, measuring samples at low temperatures [1], analyzing reactive surfaces [2], and studying atomic or molecular adsorbents with atomic or submolecular resolution [3]. The first AFM images with true atomic resolution were
PDF
Album
Full Research Paper
Published 11 Oct 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • the ion beam process by modifying sputtering processes. Even under an ultrahigh vacuum of 10−12 mbar there are still 104 molecules·cm−3 remaining in the experimental chamber, thus making water by far the most common contaminant. These assumptions can be confirmed by SIMS experiments [22]. It is
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • components, VCPD can be obtained directly without the need to employ a feedback loop, knowledge of the tip–sample capacitance gradient, or application of a DC bias. Initially implemented in ultrahigh vacuum by Takeuchi et al. [30], the method was extended to liquids by Kobayashi et al. [80] and to ambient
PDF
Full Research Paper
Published 12 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • Fullerene (C60) has been deposited in ultrahigh vacuum on top of a zinc tetraphenylporphyrin (ZnTPP) monolayer self-assembled on a Fe(001)–p(1 × 1)O substrate. The nanoscale morphology and the electronic properties of the C60/ZnTPP/Fe(001)–p(1 × 1)O heterostructure have been investigated by scanning
  • an ideal buffer layer for the growth of C60, which forms a compact film weakly coupled with the metallic substrate. Materials and Methods The experiments were performed in two ultrahigh vacuum (UHV) systems. Clean Fe(001) is obtained by deposition of a thick Fe film (500 nm) by molecular beam epitaxy
PDF
Album
Full Research Paper
Published 30 Aug 2022
Other Beilstein-Institut Open Science Activities