Search results

Search for "NHCs" in Full Text gives 69 result(s) in Beilstein Journal of Organic Chemistry.

Visible-light-driven NHC and organophotoredox dual catalysis for the synthesis of carbonyl compounds

  • Vasudevan Dhayalan

Beilstein J. Org. Chem. 2025, 21, 2584–2603, doi:10.3762/bjoc.21.200

Graphical Abstract
  • chemistry. In particular, dual catalysis combining N-heterocyclic carbenes (NHCs) with organophotocatalysts (e.g., 4CzIPN, eosin Y, rhodamine, 3DPAFIPN, Mes-Acr-Me+ClO4−) has emerged as a powerful photocatalytic strategy for efficiently constructing a wide variety of carbonyl compounds via radical cross
  • , particularly the synergistic combination of N-heterocyclic carbenes (NHCs) with organic photocatalysts, has opened new avenues in molecular construction, particularly for the novel, practical preparation of carbonyl group-containing compounds [13][14][15][16]. These ubiquitous ketone, ester, and amide
  • functional groups are found in various drugs, natural products, and optoelectronic materials. In the last three decades, N-heterocyclic carbenes (NHCs) have been renowned as versatile organocatalysts, including thiazolium, imidazolium, and triazolium moieties. NHCs are extensively used in many catalytic
PDF
Album
Review
Published 21 Nov 2025

Photochemical reduction of acylimidazolium salts

  • Michael Jakob,
  • Nick Bechler,
  • Hassan Abdelwahab,
  • Fabian Weber,
  • Janos Wasternack,
  • Leonardo Kleebauer,
  • Jan P. Götze and
  • Matthew N. Hopkinson

Beilstein J. Org. Chem. 2025, 21, 1973–1983, doi:10.3762/bjoc.21.153

Graphical Abstract
  • ; carbonyls; NHCs; photochemistry; reduction; Introduction The introduction and exploration of N-heterocyclic carbenes (NHCs) ranks among the most important developments in chemistry research of the last 30 years [1][2][3]. In addition to their numerous valuable roles as ligands, including for important
  • transition-metal complexes such as the Grubbs’ second-generation metathesis catalyst, NHCs are now also well-established as organocatalysts. With the first application pre-dating the unambiguous characterization of a free NHC by nearly 50 years, NHCs can facilitate numerous synthetically attractive
  • offer many synthetic advantages while the wide availability of chiral NHCs can also allow for high levels of enantioselectivity. As effective enamine and active ester derivatives, Breslow and acylazolium intermediates A and B typically react via classical two-electron polar mechanisms, however, recent
PDF
Album
Supp Info
Letter
Published 25 Sep 2025

Cu–Bpin-mediated dimerization of 4,4-dichloro-2-butenoic acid derivatives enables the synthesis of densely functionalized cyclopropanes

  • Patricia Gómez-Roibás,
  • Andrea Chaves-Pouso and
  • Martín Fañanás-Mastral

Beilstein J. Org. Chem. 2025, 21, 877–883, doi:10.3762/bjoc.21.71

Graphical Abstract
  • a mixture of Z:E isomers (Table 1, entry 8). Having identified the proper combination of base and solvent, we then screened different copper catalysts. Different NHCs, bisphosphines and phosphines were tested (Table 1, entries 9–14) and excellent chemo- and diastereoselectivity was observed in all
PDF
Album
Supp Info
Letter
Published 05 May 2025

A laterally-fused N-heterocyclic carbene framework from polysubstituted aminoimidazo[5,1-b]oxazol-6-ium salts

  • Andrew D. Gillie,
  • Matthew G. Wakeling,
  • Bethan L. Greene,
  • Louise Male and
  • Paul W. Davies

Beilstein J. Org. Chem. 2024, 20, 621–627, doi:10.3762/bjoc.20.54

Graphical Abstract
  • ; imidazolium; NHC; Introduction Imidazolium-derived nucleophilic heterocyclic carbenes (NHCs) have had a sustained impact across the fields of organometallic and main group chemistry, transition-metal catalysis, materials synthesis and organocatalysis [1]. Laterally annellated polycyclic NHCs offer a useful
  • contrast to the most widely used ‘umbrella-like’ NHCs (Figure 1) [2][3]. An extended π-system influences the donor and acceptor properties of the carbene whilst substitution on the polycycle can position groups adjacent to the active centre. The imidazo[1,5-a]pyridin-3-ylidene motif (ImPy), independently
  • introduced by the groups of Lassaletta [4] and Glorius [5], is the most widely explored framework for L-shaped ligands (Figure 1a). Even when only considering gold catalysis [6], the ImPy framework has been used to great effect [7]. The motif has been used to introduce sterically demanding NHCs with
PDF
Album
Supp Info
Letter
Published 18 Mar 2024

1-Butyl-3-methylimidazolium tetrafluoroborate as suitable solvent for BF3: the case of alkyne hydration. Chemistry vs electrochemistry

  • Marta David,
  • Elisa Galli,
  • Richard C. D. Brown,
  • Marta Feroci,
  • Fabrizio Vetica and
  • Martina Bortolami

Beilstein J. Org. Chem. 2023, 19, 1966–1981, doi:10.3762/bjoc.19.147

Graphical Abstract
  • -heterocyclic carbenes (NHCs), extensively studied as organocatalysts as well as ligands for transition-metal-promoted synthetic methodologies [97][98][99]. Under anodic oxidation, the electrogeneration of boron trifluoride (BF3) from tetrafluoroborate ILs occurs [100][101]. Moreover, we have recently
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Aldiminium and 1,2,3-triazolium dithiocarboxylate zwitterions derived from cyclic (alkyl)(amino) and mesoionic carbenes

  • Nedra Touj,
  • François Mazars,
  • Guillermo Zaragoza and
  • Lionel Delaude

Beilstein J. Org. Chem. 2023, 19, 1947–1956, doi:10.3762/bjoc.19.145

Graphical Abstract
  • weaker basicity and greater modularity, the related 1,2,4-triazol-5-ylidene derivatives D have been mainly employed in organocatalysis [6]. Besides these four types of N-heterocyclic carbenes (NHCs), other families of cyclic compounds have been actively pursued to further expand the diversity of singlet
  • of MIC precursors [24][25][26][27][28]. By analogy with the archetypical NHCs bearing mesityl (Mes) or 2,6-diisopropylphenyl (Dipp) substituents on their nitrogen atoms, we have prepared three triazole derivatives with mixed Mes/Ph, Mes/Bu, or Dipp/Ph substituents on N1 and C4, respectively (Scheme 3
  • affinity and the higher basicity of CAACs and MICs vs NHCs [25][69][70][71] did not prevent the formation of the desired adducts using Cs2CO3 instead of KN(SiMe3)2 or NaOt-Bu, as evidenced by the appearance of revealing orange-red colors and by the emergence of a characteristic resonance for the CS2− unit
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • Nosheen Beig Varsha Goyal Raj K. Bansal Department of Chemistry, The IIS (deemed to be University), Jaipur, 302 020, India 10.3762/bjoc.19.102 Abstract N-Heterocyclic carbenes (NHCs) are a special type of carbenes in which the carbene carbon atom is part of the nitrogen heterocyclic ring. Due to
  • the simplicity of their synthesis and the modularity of their stereoelectronic properties, NHCs have unquestionably emerged as one of the most fascinating and well-known species in chemical science. The remarkable stability of NHCs can be attributed to both kinetic as well as thermodynamic effects
  • caused by its structural features. NHCs constitute a well-established class of new ligands in organometallic chemistry. Although initially NHCs were regarded as pure σ-donor ligands, later experimental and theoretical studies established the presence of a significant back donation from the d-orbital of
PDF
Album
Review
Published 20 Sep 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • bond of 105 provides a seven-membered rhodacyclic intermediate 106. The protonation at the Rh–C bond of intermediate 106 in the presence of RCOOH furnishes hydroarylation product 104. Nitrogen heterocyclic carbenes (NHCs) are of central importance in organometallic chemistry and in organic synthesis
  • . Also, metal–NHC complexes have wide application in catalysis and various organic transformations and a range of metal–NHCs served as catalysts. In 2010, using NHC ligands, Yap and co-workers [90] developed a method for the direct para and meta-C–H alkenylation of pyridines with 4-octyne (107) using a
PDF
Album
Review
Published 12 Jun 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • described an elegant aryl–aryl cross-coupling procedure suppressing the formation of Grignard homocoupling byproducts relying on the use of FeF3 as catalyst, associated with strong N-heterocyclic carbenes (NHCs) and a source of fluoride anions [28]. A similar procedure involving sodium alkoxide additives
  • and NHCs was also described by Duong for the aryl–aryl cross coupling [29]. Alkoxide salts appear as good alternatives to NMP or phosphate-based additives, since several classic alcohol sources display low toxicities and can also come from renewable resources [30]. In this context, Cahiez and Lefèvre
PDF
Album
Perspective
Published 14 Feb 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • [62] has found numerous applications in oxidative transformations, especially in the CH-functionalization of aldehydes (Scheme 3). It is believed that NHCs reversibly form enaminols (Breslow intermediates, Scheme 3) from aldehydes [63]. In this transformation an electrophilic aldehyde carbon turns to
PDF
Album
Perspective
Published 09 Dec 2022

First example of organocatalysis by cathodic N-heterocyclic carbene generation and accumulation using a divided electrochemical flow cell

  • Daniele Rocco,
  • Ana A. Folgueiras-Amador,
  • Richard C. D. Brown and
  • Marta Feroci

Beilstein J. Org. Chem. 2022, 18, 979–990, doi:10.3762/bjoc.18.98

Graphical Abstract
  • can be modified by the presence of a base or by a single electron cathodic reduction of the C–H between nitrogen atoms of the imidazolium ring (Scheme 1), inducing the formation of a N-heterocyclic carbene (NHC) [7][8]. In recent years, NHCs have achieved great success: they have been frequently used
  • NHCs are generated in situ, where they may be used as basic or nucleophilic species. Due to the difficulty isolating highly reactive NHCs, the concentration of the obtained NHC solution can be determined indirectly by addition of elemental sulfur after the electrolysis, which realizes quantitative
  • conversion to the corresponding thione (Scheme 2) [12]. NHCs are used as organocatalysts in many reactions of aldehydes (mainly aromatic) [13][14]. In fact, the reaction of NHCs with aldehydes can lead to the formation of the “Breslow intermediate” [15], in which the reactive character of the carbonyl carbon
PDF
Album
Full Research Paper
Published 05 Aug 2022

Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides

  • Pratibha Sharma,
  • Raakhi Gupta and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2021, 17, 2585–2610, doi:10.3762/bjoc.17.173

Graphical Abstract
  • aza-MRs. However, the last three review articles are almost 10 years old and they do not cover the application of many important organocatalysts, such as thioureas and nitrogen heterocyclic carbenes (NHCs) used for the asymmetric aza-MRs. Furthermore, in the last review article [24], the application
  • carbenes (NHC) In recent years, NHCs have been used as organocatalysts for a wide variety of reactions [62]. Wang et al. investigated the use of several 1,2,4-triazolo-annelated chiral NHCs as organocatalysts to catalyze enantioselective aza-MR between primary amines (100) and β-trifluoromethyl-β
PDF
Album
Review
Published 18 Oct 2021

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • catalyst 105, to generate intermediate 106, which can then turn over the NHC and release the desired acylated products 107 in good yields and enantioselectivities (13 examples, up to 96:4 er). There has been little development of enantioselective reactions using NHCs in photocatalysis since this work
  • there is much progress yet to be made. Brønsted acid catalysis Using chiral amines and NHCs as catalysts to generate asymmetry relies upon the formation of covalently bonded intermediates such as enamines, iminium ions or Breslow intermediates within the catalytic cycle. The first example of merging non
PDF
Album
Review
Published 29 Sep 2020

Synergy between supported ionic liquid-like phases and immobilized palladium N-heterocyclic carbene–phosphine complexes for the Negishi reaction under flow conditions

  • Edgar Peris,
  • Raúl Porcar,
  • María Macia,
  • Jesús Alcázar,
  • Eduardo García-Verdugo and
  • Santiago V. Luis

Beilstein J. Org. Chem. 2020, 16, 1924–1935, doi:10.3762/bjoc.16.159

Graphical Abstract
  • cross-coupling; NHC complex; palladium; supported ionic liquid; Introduction N-heterocyclic carbenes (NHCs) are known as efficient coordination ligands for different types of metals. The main feature of NHC complexes is their structural tunability [1]. Thus, their catalytic efficiency can be easily
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2020

NHC-catalyzed enantioselective synthesis of β-trifluoromethyl-β-hydroxyamides

  • Alyn T. Davies,
  • Mark D. Greenhalgh,
  • Alexandra M. Z. Slawin and
  • Andrew D. Smith

Beilstein J. Org. Chem. 2020, 16, 1572–1578, doi:10.3762/bjoc.16.129

Graphical Abstract
  • trifluoromethyl ketones (Figure 1C) [20]. Over the last twenty years, NHCs have been widely exploited as highly efficient organocatalysts that have found use in numerous applications and were the subject of many extensive reviews [21][22][23][24][25][26]. Among the most common reactive intermediates generated
  • using NHCs, the azolium enolate has been widely used [27][28]. Methods to generate azolium enolates from a number of precursors have been reported, including the use of ketenes [29][30], α-functionalized aldehydes [31][32][33][34][35], enals [36][37][38], aryl esters [39][40][41][42], or aldehydes [43
PDF
Album
Supp Info
Letter
Published 30 Jun 2020

A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions

  • Pezhman Shiri and
  • Jasem Aboonajmi

Beilstein J. Org. Chem. 2020, 16, 551–586, doi:10.3762/bjoc.16.52

Graphical Abstract
  • acetonitrile at 60 °C for 5 h and then at 100 °C for 40 minutes. The obtained poly(N-heterocyclic carbine–Cu complex) immobilized on nanosilica, (Cu(II)–NHCs)n@nSiO2 (36), was filtrated, washed with acetonitrile/methanol, and dried. The catalyst (Cu(II)–NHCs)n@nSiO2 catalyst (36) showed outstanding activity
PDF
Album
Review
Published 01 Apr 2020

Copper-catalyzed enantioselective conjugate reduction of α,β-unsaturated esters with chiral phenol–carbene ligands

  • Shohei Mimura,
  • Sho Mizushima,
  • Yohei Shimizu and
  • Masaya Sawamura

Beilstein J. Org. Chem. 2020, 16, 537–543, doi:10.3762/bjoc.16.50

Graphical Abstract
  • chiral p-tol-BINAP/copper catalyst established the excellent utility of chiral bisphosphine ligands for this type of reaction [4]. Surprisingly, however, chiral ligands based on N-heterocyclic carbenes (NHCs) [12] have not been applied to the conjugate reduction of α,β-unsaturated carbonyl compounds
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2020

Aerobic synthesis of N-sulfonylamidines mediated by N-heterocyclic carbene copper(I) catalysts

  • Faïma Lazreg,
  • Marie Vasseur,
  • Alexandra M. Z. Slawin and
  • Catherine S. J. Cazin

Beilstein J. Org. Chem. 2020, 16, 482–491, doi:10.3762/bjoc.16.43

Graphical Abstract
  • , NHCs (NHC = N-heterocyclic carbene) have become ligands of choice to permit the stabilisation and formation of highly reactive transition metal species [14]. Thus, significant advances have been achieved using this supporting ligand family [15][16][17][18][19]. Recently, our group contributed to this
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2020

Architecture and synthesis of P,N-heterocyclic phosphine ligands

  • Wisdom A. Munzeiwa,
  • Bernard Omondi and
  • Vincent O. Nyamori

Beilstein J. Org. Chem. 2020, 16, 362–383, doi:10.3762/bjoc.16.35

Graphical Abstract
  • (NHCs) have proved to be versatile ligands in organometallic chemistry [82]. The synthesis of sterically crowded biaryl ligands is still a challenging task, especially under mild reaction conditions. The diphosphine complexes of imidazolylphosphines proved to be an alternative towards the coupling of
PDF
Album
Review
Published 12 Mar 2020

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
PDF
Album
Review
Published 19 Jul 2019

Hoveyda–Grubbs catalysts with an N→Ru coordinate bond in a six-membered ring. Synthesis of stable, industrially scalable, highly efficient ruthenium metathesis catalysts and 2-vinylbenzylamine ligands as their precursors

  • Kirill B. Polyanskii,
  • Kseniia A. Alekseeva,
  • Pavel V. Raspertov,
  • Pavel A. Kumandin,
  • Eugeniya V. Nikitina,
  • Atash V. Gurbanov and
  • Fedor I. Zubkov

Beilstein J. Org. Chem. 2019, 15, 769–779, doi:10.3762/bjoc.15.73

Graphical Abstract
  • that NHCs groups, in particular, 1,3-bis(2,4,6-trimethylphenyl)imidazolidine are superior in terms of price/quality ratio. We suppose that further advances should be rather aimed at the lower part of the ruthenium complex [15][16][17]. This trend is confirmed partly by the Grubbs catalysts with a
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2019

Ruthenium-based olefin metathesis catalysts with monodentate unsymmetrical NHC ligands

  • Veronica Paradiso,
  • Chiara Costabile and
  • Fabia Grisi

Beilstein J. Org. Chem. 2018, 14, 3122–3149, doi:10.3762/bjoc.14.292

Graphical Abstract
  • symmetrical counterparts fail or show poor efficiency [5][6]. Moreover, the use of catalysts incorporating bidentate unsymmetrical NHCs has allowed for significant enhancements in the field of both asymmetric and Z-selective olefin metathesis reactions [7][8][9]. The aim of the present review is to provide a
  • description of the catalytic behavior of ruthenium complexes bearing monodentate five-membered uNHCs. A special focus is given to the more recent advancements in the development of such unsymmetrical architectures for targeted metathesis applications. Ruthenium complexes with NHCs presenting alternative
  • heteroatoms, such as thiazol-2-ylidene ligands [10], or those containing one nitrogen substituent, such as the series of cyclic (alkyl) (amino) carbenes (CAACs) introduced by Bertrand et al. [11], are not included in this survey. Review Ruthenium catalysts coordinated with N-aryl, N’-aryl NHCs The first
PDF
Album
Review
Published 28 Dec 2018

The activity of indenylidene derivatives in olefin metathesis catalysts

  • Maria Voccia,
  • Steven P. Nolan,
  • Luigi Cavallo and
  • Albert Poater

Beilstein J. Org. Chem. 2018, 14, 2956–2963, doi:10.3762/bjoc.14.275

Graphical Abstract
  • is ortho-substituted, there might be present steric repulsion with the NHCs, which might in turn facilitate the departure of the indenyl ligand [36]. Apart from reducing decomposition [37][38], this steric pressure should lead to faster rates for the initiation step of the metathesis reaction. This
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

The influence of the cationic carbenes on the initiation kinetics of ruthenium-based metathesis catalysts; a DFT study

  • Magdalena Jawiczuk,
  • Angelika Janaszkiewicz and
  • Bartosz Trzaskowski

Beilstein J. Org. Chem. 2018, 14, 2872–2880, doi:10.3762/bjoc.14.266

Graphical Abstract
  • carbene (NHC) by Arduengo [1] was a milestone in organic chemistry which allowed for thorough and systematic studies on all aspects of NHC chemistry in the past 25 years [2][3][4][5][6][7]. It was soon realized that NHCs are a very useful class of ligands for transition metal catalysis as both their
  • steric and electronic properties can be easily controlled and tuned to obtain very efficient and specific catalysts. One of the most successful uses of NHCs in catalysis is the olefin metathesis, which nowadays became one of the most commonly used tool in modern synthesis [8][9][10]. The vast popularity
  • ]. Today there are hundreds of examples of second generation Grubbs and Hoveyda–Grubbs catalyst derivatives bearing different NHCs to form specialized catalysts for metathesis [13][14]. An interesting attempt to further modify the electronic properties of NHCs is to introduce a charged moiety to form
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2018

Water-soluble SNS cationic palladium(II) complexes and their Suzuki–Miyaura cross-coupling reactions in aqueous medium

  • Alphonse Fiebor,
  • Richard Tia,
  • Banothile C. E. Makhubela and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1859–1870, doi:10.3762/bjoc.14.160

Graphical Abstract
  • reactions [32][33]. As it was elegantly reviewed by Singh and co-workers [33], these organosulfur ligands can be classified into pincer type (symmetrical and unsymmetrical), thioethers, thiourea-based ligands, sulfur-substituted NHCs, thiosemicarbazones and sulfated Schiff bases. Of the pincer ligands
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2018
Other Beilstein-Institut Open Science Activities