Search results

Search for "NaBH4" in Full Text gives 211 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Double-headed nucleosides: Synthesis and applications

  • Vineet Verma,
  • Jyotirmoy Maity,
  • Vipin K. Maikhuri,
  • Ritika Sharma,
  • Himal K. Ganguly and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2021, 17, 1392–1439, doi:10.3762/bjoc.17.98

Graphical Abstract
  • 116 following previously reported procedures [65]. Then, the nucleoside 116 was converted into the primary alcohol 117 by treatment with OsO4 and oxidative cleavage by NaIO4 followed by reduction using NaBH4. The primary alcohol 117 was further converted into nucleoside monomer 118 by introduction of
  • was reduced in the presence of NaBH4 followed by the treatment with MsCl in pyridine to get the nucleoside salt 129. Next, the pyridinium group was replaced by an N3-protected thymine in basic medium followed by removal of the protecting groups and the selective DMTr protection of the C-5′-hydroxy
PDF
Album
Review
Published 08 Jun 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • state, the metal cation of the enolate is being coordinated with both nitrogen and oxygen atoms of the sulfinimine [25][26] (Scheme 3). In 1999, Ellman and co-workers described the reduction of sulfinyl imines using sodium borohydride (NaBH4) [34] or o ʟ-selectride [35]. Davis–Ellman transition state
PDF
Album
Review
Published 12 May 2021

α,γ-Dioxygenated amides via tandem Brook rearrangement/radical oxygenation reactions and their application to syntheses of γ-lactams

  • Mikhail K. Klychnikov,
  • Radek Pohl,
  • Ivana Císařová and
  • Ullrich Jahn

Beilstein J. Org. Chem. 2021, 17, 688–704, doi:10.3762/bjoc.17.58

Graphical Abstract
  • LiAlH4 pyrrolidone trans-12b was reduced to pyrrolidine trans-15 in 95% yield, whereas no reaction was observed with DIBAL-H, NaBH4 or LiHBEt3 as the reducing agents; the starting material was typically recovered in 95% yield. However, the reduction of trans-12b by Red-Al in the presence of KOt-Bu was
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2021

Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols

  • Marek Kõllo,
  • Marje Kasari,
  • Villu Kasari,
  • Tõnis Pehk,
  • Ivar Järving,
  • Margus Lopp,
  • Arvi Jõers and
  • Tõnis Kanger

Beilstein J. Org. Chem. 2021, 17, 581–588, doi:10.3762/bjoc.17.52

Graphical Abstract
  • Discussion Synthesis of starting compounds for enzymatic hydroxylation In order to estimate the possible diversity of the substrates as starting materials for the biocatalytic transformation, cortisol (1) was converted to a hydroxylated steroid derivative 2 by reduction of the C20 carbonyl group with NaBH4
  • until further analysis. Synthesis of substrates 11β-Hydroxyandrost-4-ene-3,17-dione (2) To a stirred solution of cortisol (1, 1.2 g, 3.36 mmol) in a 1:1 mixture of EtOH and CH2Cl2 (23 mL), NaBH4 (51.2 mg, 1.35 mmol) was added in one portion at room temperature. After 2 h, acetone (5.8 mL) was added
  • ) NaBH4, EtOH/CH2Cl2 1:1, 2 h, rt, then acetone, H2O, NaIO4, overnight, rt, 99%; ii) Ac2O, p-TsOH (1 mol %), MW (800 W), 6 min, 52% for 3 and 33% for 4; iii) Ac2O, DMAP, Et3N, CH2Cl2, overnight, rt, 93%. Oxidation of diols 5 and 6 with NaOCl·5H2O. Enzymatic hydroxylation. Supporting Information
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2021

The preparation and properties of 1,1-difluorocyclopropane derivatives

  • Kymbat S. Adekenova,
  • Peter B. Wyatt and
  • Sergazy M. Adekenov

Beilstein J. Org. Chem. 2021, 17, 245–272, doi:10.3762/bjoc.17.25

Graphical Abstract
  • was modified by Wang and co-workers [76]. It is also possible to remove the fluorine substituents from difluorocyclopropanes while preserving the three-membered ring. The reductive defluorination of the difluorocylopropane derivative 75 by the treatment with excess NaBH4 in hot DMSO (Scheme 31) gave
  • the corresponding cyclopropane 76 [77]. Caution is advised in view of a recent report that NaBH4 lowers the onset temperature for the thermal decomposition of DMSO [78]. The asymmetric difluorocyclopropanation has not yet been developed to the extent achieved for the epoxidation. Consequently, the
PDF
Album
Review
Published 26 Jan 2021

Direct synthesis of anomeric tetrazolyl iminosugars from sugar-derived lactams

  • Michał M. Więcław and
  • Bartłomiej Furman

Beilstein J. Org. Chem. 2021, 17, 115–123, doi:10.3762/bjoc.17.12

Graphical Abstract
  • methodology followed by NaBH4 reduction. This structure with three condensed rings can be seen as a new class of unnatural, chiral alkaloid scaffolds, potentially exhibiting pharmacological activity (Scheme 3) [40]. Various unsuccessful attempts were made to deprotect compound 3e. Unexpectedly, however, one of
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2021

Progress in the total synthesis of inthomycins

  • Bidyut Kumar Senapati

Beilstein J. Org. Chem. 2021, 17, 58–82, doi:10.3762/bjoc.17.7

Graphical Abstract
  • PdCl2(MeCN)2 produced (E,E,E)-triene 32 in 84% yield. Finally, NaBH4 reduction of 32 gave alcohol (rac)-13, in which the triene moiety is analogous to inthomycin C ((rac)-3) and oxazolomycin B (5b) (Scheme 2). After the successful application of the Stille reaction to construct the (E,E,E)-triene system
PDF
Album
Review
Published 07 Jan 2021

Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

  • Dimas J. P. Lima,
  • Antonio E. G. Santana,
  • Michael A. Birkett and
  • Ricardo S. Porto

Beilstein J. Org. Chem. 2021, 17, 28–41, doi:10.3762/bjoc.17.4

Graphical Abstract
  • -carboxaldehyde, 9:1 77a/77b, 67% (after chromatographic separation); ii) butyl vinyl ether, Hg(OAc)2, (10 mol %), sealed tube, 130–135 °C, 79%; iii) vinylmagnesium bromide, −78 °C; iv) Dess–Martin periodinane, 83% over two steps; v) Grubbs catalyst 2nd gen., CH2Cl2, reflux, 74%; vi) 1. (PhSe)2, NaBH4, EtOH; 2
  • , 83% over two steps; vi) Grubbs catalyst 2nd gen., CH2Cl2, reflux, 74%; vii) 1. (PhSe)2, NaBH4, EtOH; 2. EtOH/THF, 99%; viii) 1. O3, CH2Cl2, −78 °C; 2. DMS, −78 °C to rt; 3. NaClO2, Na2HPO4, t-BuOH/H2O, 2-methy-2-butene, 90%; ix) DPPA, Et3N, toluene, reflux, 65%; x) 1. CuCl, H2O/THF, rt to 40 °C; 2
PDF
Album
Review
Published 05 Jan 2021

Amine–borane complex-initiated SF5Cl radical addition on alkenes and alkynes

  • Audrey Gilbert,
  • Pauline Langowski,
  • Marine Delgado,
  • Laurent Chabaud,
  • Mathieu Pucheault and
  • Jean-François Paquin

Beilstein J. Org. Chem. 2020, 16, 3069–3077, doi:10.3762/bjoc.16.256

Graphical Abstract
  • freshly prepared [37]. It is therefore of interest to address this challenge in order to widen the scope of this transformation. Compared to trialkylboranes, amine–borane complexes have shown to be more stable [38]. Indeed, they are usually air-stable, and their preparation from NaBH4, H2SO4 and amines
PDF
Album
Supp Info
Correction
Full Research Paper
Published 16 Dec 2020

All-carbon [3 + 2] cycloaddition in natural product synthesis

  • Zhuo Wang and
  • Junyang Liu

Beilstein J. Org. Chem. 2020, 16, 3015–3031, doi:10.3762/bjoc.16.251

Graphical Abstract
  • NaBH4 afforded alcohol 79. Alcohol 79 was converted into the corresponding xanthate ester 80. This ester 80 was exposed to an excessive amount of AIBN and N,O-bis(trimethylsilyl)acetamide in the presence of a catalytic amount of tributylstannane producing bicyclo[2.2.2]diazaoctane 81 in 54% yield. The
PDF
Album
Review
Published 09 Dec 2020

Fluorine effect in nucleophilic fluorination at C4 of 1,6-anhydro-2,3-dideoxy-2,3-difluoro-β-D-hexopyranose

  • Danny Lainé,
  • Vincent Denavit,
  • Olivier Lessard,
  • Laurie Carrier,
  • Charles-Émile Fecteau,
  • Paul A. Johnson and
  • Denis Giguère

Beilstein J. Org. Chem. 2020, 16, 2880–2887, doi:10.3762/bjoc.16.237

Graphical Abstract
  • hardly reproducible because a thick gel was formed after neutralisation with an acidic resin, thus resulting in yield loss after a difficult filtration. Next, we evaluated sodium borohydride (NaBH4) as reducing reagent. Difluoroglucose 21 was subjected to 5 equivalents of NaBH4 in EtOH at rt and compound
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2020

3-Acetoxy-fatty acid isoprenyl esters from androconia of the ithomiine butterfly Ithomia salapia

  • Florian Mann,
  • Daiane Szczerbowski,
  • Lisa de Silva,
  • Melanie McClure,
  • Marianne Elias and
  • Stefan Schulz

Beilstein J. Org. Chem. 2020, 16, 2776–2787, doi:10.3762/bjoc.16.228

Graphical Abstract
  • o-iodoxybenzoic acid (IBX) [31]. The resulting aldehyde was transformed into β-ketoacid 16 with ethyl diaazoacetate and SnCl2 [32], which upon reduction with NaBH4 in methanol delivered methyl 3-hydroxyoctadecanoate (17). Transesterification was performed with 3-methyl-3-buten-1-ol using distannoxan
  • ) and ithomiolide A (3). Biosynthetic formation of hedycaryol (7) and α-elemol (8). Synthesis of isoprenyl 3-acetoxyoctadecanoate (11). a) IBX, EtOAc, 60 °C, 3.15 h, 99%; b) SnCl2, CH2Cl2, rt, 70%; c) NaBH4, 12 h, 98%; d) SnOBu2, 140°C, 36 h, 78%; e) Ac2O, pyridine, DMAP, CH2Cl2, 12 h rt, 67%. a) 48
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2020

A new method for the synthesis of diamantane by hydroisomerization of binor-S on treatment with sulfuric acid

  • Rishat I. Aminov and
  • Ravil I. Khusnutdinov

Beilstein J. Org. Chem. 2020, 16, 2534–2539, doi:10.3762/bjoc.16.205

Graphical Abstract
  • , PtO2) in glacial acetic acid under high pressure conditions at 70 °С and 200 psi of H2 [8][9]. In the presence of superacid catalysts, such as B(OSO2CF3)3, CF3SO3H/SbF5 1:1, CF3SO3H/B(OSO2CF3)3 1:1 [10], NaBH4/CF3SO3H [11], or zeolite Y in the NaH form (NaY) [12], hydrocarbons 3a–c isomerize to
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2020

Palladium nanoparticles supported on chitin-based nanomaterials as heterogeneous catalysts for the Heck coupling reaction

  • Tony Jin,
  • Malickah Hicks,
  • Davis Kurdyla,
  • Sabahudin Hrapovic,
  • Edmond Lam and
  • Audrey Moores

Beilstein J. Org. Chem. 2020, 16, 2477–2483, doi:10.3762/bjoc.16.201

Graphical Abstract
  • the use of ammonium persulfate as a mild oxidizing agent to liberate the nanocrystallites existing within bulk chitin to yield ChNC with carboxylate functionalities [16]. Moreover, deacetylation of ChNCs in alkaline conditions, in the presence of NaBH4, led to chitosan nanocrystals (ChsNCs) with
  • Information File 1) [16]. ChNCs were treated with ammonium persulfate (APS) for 16 h to form disperse ChNCs after washing. ChsNCs were made by deacetylating ChNCs in the presence of concentrated NaOH as well as a small amount of NaBH4 (Scheme 1). As seen through transmission electron microscopy (TEM) in
  • selected here because it is one of cleanest reductants in this context as it will limit the production of byproducts to chloride salts, by opposition to more classic reducing agents such as NaBH4. Prior to characterization, the non-dried samples were purified by dialysis. The zeta potential measurements
PDF
Album
Supp Info
Letter
Published 07 Oct 2020

Synthesis of 6,13-difluoropentacene

  • Matthias W. Tripp and
  • Ulrich Koert

Beilstein J. Org. Chem. 2020, 16, 2136–2140, doi:10.3762/bjoc.16.181

Graphical Abstract
  • subsequent reduction step using NaBH4 to diol 13 was performed without further purification of the quinone. The low yield for the formation of 13 seems to be an intrinsic instability of its ortho-fluorobenzylic alcohol moiety. Moreover, the compound quantitatively decomposes to 6,13-pentacenequinone 15 in
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2020

Synergy between supported ionic liquid-like phases and immobilized palladium N-heterocyclic carbene–phosphine complexes for the Negishi reaction under flow conditions

  • Edgar Peris,
  • Raúl Porcar,
  • María Macia,
  • Jesús Alcázar,
  • Eduardo García-Verdugo and
  • Santiago V. Luis

Beilstein J. Org. Chem. 2020, 16, 1924–1935, doi:10.3762/bjoc.16.159

Graphical Abstract
  • of methylimidazolium units leading to a Pd(II)-SILLP system 11 with 0.56 mequiv of Pd/g of SILLP and 3.79 mequiv of IL-like units/g of SILLP (Scheme 4). This system was treated with either NaBH4 or EtOH under microwave irradiation to produce the corresponding PdNPs immobilized onto SILLPs (12a,b
  • performance in the presence of one equivalent of the phosphine. The catalysts prepared by NaBH4 reduction were slightly less reactive than those obtained with EtOH as reducing agent. Noteworthy, the supported catalysts were active in further catalytic cycles after separation of the product by filtration and
  • NaBH4 in 12 mL EtOH/H2O 1:4, rt, 3 h. iii) 250 mg Pd-SILLP 11, 4 mL EtOH, MW (2 h, 200 °C, 300 psi, 120 W). Pd Loading for the different NHC-Pd synthesized. Negishi reaction between 5 and 6 catalyzed by 12a,b.a Supporting Information Supporting Information File 538: Experimental procedures and spectra
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2020

Clickable azide-functionalized bromoarylaldehydes – synthesis and photophysical characterization

  • Dominik Göbel,
  • Marius Friedrich,
  • Enno Lork and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2020, 16, 1683–1692, doi:10.3762/bjoc.16.139

Graphical Abstract
  • acidic conditions, rapid aqueous work-up was conducted, followed by reduction with NaBH4, yielding the corresponding primary alcohol 8 in 81% yield over two steps. The transformation to azide 9 was accomplished by deprotonation using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and reaction with
  • reduction with NaBH4 to give the primary alcohol 19. In contrast to benzaldehyde 7, carbaldehyde 18 showed no decomposition at ambient temperature. While acidic hydrolysis of 19 provided exocyclic γ-lactone 20, the substitution reaction with DPPA/NaN3 yielded the primary azide in 87% yield. In accordance to
  • °C to 25 °C, 1.5 h; c) NaBH4, THF/MeOH 1:1 v/v, 0 °C, 1 h, 81% (2 steps); d) DPPA, DBU, PhMe, 25 °C, 18 h, 98%; e) 1) MeOTf, CH2Cl2, 25 °C, 2.5 h; 2) NaBH4, THF/MeOH 4:1 v/v, 0 °C, 2.5 h; 3) oxalic acid, THF/H2O 4:1 v/v, 25 °C, 20 h, 78%. Overall yield from 4-bromobenzaldehyde to 3: 56% (5 steps
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2020

Synthesis of new dihydroberberine and tetrahydroberberine analogues and evaluation of their antiproliferative activity on NCI-H1975 cells

  • Giacomo Mari,
  • Lucia De Crescentini,
  • Serena Benedetti,
  • Francesco Palma,
  • Stefania Santeusanio and
  • Fabio Mantellini

Beilstein J. Org. Chem. 2020, 16, 1606–1616, doi:10.3762/bjoc.16.133

Graphical Abstract
  • evaluated (Scheme 1). Results and Discussion Chemistry The unsubstituted DHBER was prepared by treating BER with 2.5 equivalents of NaBH4 in pyridine at room temperature [66][67], and employed in the reaction with α-bromohydrazone 1a chosen as the representative model, to determine the optimal reaction
  • mmol), 1 (1.0 mmol), DCM 3.0 mL, 25 °C. Isolated yields in parentheses. Synthesis of hydrazono-THBERs 3a–n. Reaction conditions: DHBER (0.5 mmol), NaBH4 (2.0 mmol), MeOH, 3.0 mL, 25 °C. Isolated yields in parentheses. Reaction conditions optimization. Supporting Information Supporting Information File
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2020

Fluorinated phenylalanines: synthesis and pharmaceutical applications

  • Laila F. Awad and
  • Mohammed Salah Ayoup

Beilstein J. Org. Chem. 2020, 16, 1022–1050, doi:10.3762/bjoc.16.91

Graphical Abstract
  • afforded the α-hydroxy esters 166a,b. Dess–Martin oxidation [79][80] of the latter, followed by hydrolysis of the ester gave keto acids 167a,b. Finally, the reductive amination of 167a,b with 25% aqueous ammonia and NaBH4 afforded the racemic β,β-difluorophenylalanine derivatives 168a,b in 67% yield [81
PDF
Album
Review
Published 15 May 2020

Synthesis of organic liquid crystals containing selectively fluorinated cyclopropanes

  • Zeguo Fang,
  • Nawaf Al-Maharik,
  • Peer Kirsch,
  • Matthias Bremer,
  • Alexandra M. Z. Slawin and
  • David O’Hagan

Beilstein J. Org. Chem. 2020, 16, 674–680, doi:10.3762/bjoc.16.65

Graphical Abstract
  • accomplished as illustrated in Scheme 3. Reduction of cyclohexanone 15 with NaBH4 gave cyclohexanol 16 in a ratio of 2:1. The major trans product 16a was purified as a single entity by column chromatography and was isolated in 45% yield. Vinyl ether 17 could be efficiently prepared using the methodology
  • conditions: a) NBS, HF·Py, DCM; b) t-BuOK, DCM, 42% in two steps [15]; c) TMSCF3, NaI, THF, reflux, 46%. Synthesis of compound 10. Reagents and conditions: a) NaBH4, MeOH, rt, 45%; b) C4H9OCH=CH2, Pd(TFA)2, BPhen, Et3N, 75 °C, 62% [16]; c) TMSCF3, NaI, THF, reflux, 50%. Synthesis of compounds 11. Reagents
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2020

Asymmetric synthesis of CF2-functionalized aziridines by combined strong Brønsted acid catalysis

  • Xing-Fa Tan,
  • Fa-Guang Zhang and
  • Jun-An Ma

Beilstein J. Org. Chem. 2020, 16, 638–644, doi:10.3762/bjoc.16.60

Graphical Abstract
  • free aziridine 5a in 81% yield while maintaining the ee value. The reduction of the carbonyl moiety with either NaBH4 or LiAlH4 produced hydroxy-substituted CF2-functionalized aziridine 5b in excellent yield with exclusive diastereoselectivity [47]. Furthermore, the ring-opening of 4a under acidic
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions

  • Pezhman Shiri and
  • Jasem Aboonajmi

Beilstein J. Org. Chem. 2020, 16, 551–586, doi:10.3762/bjoc.16.52

Graphical Abstract
  • containing piperazine), respectively. In the next step, Gx-AAA–SBA-15 was dispersed in an aqueous solution of HAuCl4 and stirred for a short time. The reduction of Au was accomplished using an aqueous solution of NaBH4. The obtained material was then centrifuged and washed with deionized water. The resulting
  • solid was dispersed in an aqueous solution of CuCl2⋅3H2O for 10 min. The copper species was reduced with an aqueous solution of NaBH4. The metal–dendron SBA-15 material was filtrated, washed with deionized water, and dried to produce x wt % CuYAu–Gx-AAA–SBA-15 (x wt % = weight percent loading of Cu, Y
  • graphene oxide (rGO) with copper and palladium species (Scheme 15) [77]. In this study, graphite oxide (GO) was generated according to the modified Hummer’s method. Copper(II) was anchored on GO via ultrasonication. In the next step, copper ions were reduced by adding NaBH4. The mixture was then heated at
PDF
Album
Review
Published 01 Apr 2020

Regio- and stereoselective synthesis of new ensembles of diversely functionalized 1,3-thiaselenol-2-ylmethyl selenides by a double rearrangement reaction

  • Svetlana V. Amosova,
  • Andrey A. Filippov,
  • Nataliya A. Makhaeva,
  • Alexander I. Albanov and
  • Vladimir A. Potapov

Beilstein J. Org. Chem. 2020, 16, 515–523, doi:10.3762/bjoc.16.47

Graphical Abstract
  • , regioselective synthesis of hitherto unknown organyl 1,3-thiaselenol-2-ylmethyl selenides 6a–l in high yields (Scheme 8). The synthesis was based on the generation of sodium 1,3-thiaselenol-2-ylmethylselenolate by the reaction of NaBH4 with compound 4 in methanol followed by nucleophilic substitution reactions
  • 1,3-thiaselenol-2-ylmethylselenolate through reduction of the Se–Se bond with NaBH4 followed by nucleophilic substitution with alkyl halides (Scheme 11). Thus, two efficient methods for the preparation of novel 1,3-thiaselenol-2-ylmethylselanyl derivatives 6a–l from selenocyanate 4 and diselenides 8
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2020

Combination of multicomponent KA2 and Pauson–Khand reactions: short synthesis of spirocyclic pyrrolocyclopentenones

  • Riccardo Innocenti,
  • Elena Lenci,
  • Gloria Menchi and
  • Andrea Trabocchi

Beilstein J. Org. Chem. 2020, 16, 200–211, doi:10.3762/bjoc.16.23

Graphical Abstract
  • chemoselective carbonyl reduction to obtain the corresponding allylic alcohol derivative 36 was achieved in 92% under Luche reduction conditions employing NaBH4/CeCl3 in MeOH/DCM, resulting in the selective synthesis of the syn-alcohol, as a consequence of the formation of the equatorial alcohol favored by
  • and Pauson–Khand multicomponent reactions. Follow-up chemistry on compound 5 taking advantage of the enone chemistry. Reaction conditions. (i) NaBH4 (2 equiv), CeCl3.7H2O (2 equiv), DMC/MeOH 1:1 (20 mL/mmol), 25 °C, 1 h; (ii) m-CPBA (1 equiv), DCM (6.5 mL/mmol), 0 °C, 4 h; (iii) EtMgBr 3 M in Et2O (5
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

α-Photooxygenation of chiral aldehydes with singlet oxygen

  • Dominika J. Walaszek,
  • Magdalena Jawiczuk,
  • Jakub Durka,
  • Olga Drapała and
  • Dorota Gryko

Beilstein J. Org. Chem. 2019, 15, 2076–2084, doi:10.3762/bjoc.15.205

Graphical Abstract
  • , 4) as an organocatalyst and meso-tetraphenylporphyrin (H2TPP, 5) as a photosensitizer followed by in situ reduction with NaBH4, proceeded similarly to the reported results for simple, achiral aldehydes giving the desired diols 6–8 in 31–41% yields with moderate conversion and alcohols 9–11 as
  • bubbling under irradiation (green high power LED) for 3 h. The light was turned off and a solution was transferred to a round bottom flask with MeOH (1 mL). The reaction mixture was then cooled to 0 °C before NaBH4 (50 mg, 1.3 mmol) was added. After stirring for 15 min at 0 °C the reaction was diluted with
  • high power LED). The light was turned off and the mixture was left for phase separation. The organic layer was transferred to a round bottom flask and mixed with MeOH (1 mL). The reaction mixture was then cooled to 0 °C before NaBH4 (50 mg, 1.3 mmol) was added. After stirring for 15 min at 0 °C the
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2019
Other Beilstein-Institut Open Science Activities