Search results

Search for "chlorination" in Full Text gives 139 result(s) in Beilstein Journal of Organic Chemistry.

One-pot synthesis of 2-arylated and 2-alkylated benzoxazoles and benzimidazoles based on triphenylbismuth dichloride-promoted desulfurization of thioamides

  • Arisu Koyanagi,
  • Yuki Murata,
  • Shiori Hayakawa,
  • Mio Matsumura and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 1479–1487, doi:10.3762/bjoc.18.155

Graphical Abstract
  • benzimidoyl chloride from thioamides by desulfurization and chlorination, as well as its application to the synthesis of 2-substituted benzazoles. Keywords: benzazole; bismuth; cyclization; desulfurization; thioamide; Introduction In the production of pharmacologically active compounds, 2-substituted
  • -aminophenol with benzimidoyl chloride, which is produced by the desulfurization and chlorination of thioamides promoted by Ph3BiCl2 without a base. The developed protocol is also applied to prepare 2-substituted benzimidazoles using N-tosyl-1,2-phenylenediamines as substrates. Results and Discussion We
  • aerobic conditions, and requires no bases. In this system, Ph3BiCl2 acts as a superior reagent for the desulfurization and chlorination of thioamides into benzimidoyl chloride as a reaction intermediate. On the other hand, the reaction still has the disadvantage of requiring excess amounts of Ph3BiCl2 and
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Scope of tetrazolo[1,5-a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof

  • Laura Holzhauer,
  • Chloé Liagre,
  • Olaf Fuhr,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2022, 18, 1088–1099, doi:10.3762/bjoc.18.111

Graphical Abstract
  • ). Condensation to the corresponding quinoxalinone and subsequent chlorination was followed by introduction of the tetrazole moiety into the molecule via sodium azide to yield 11a–e. Alternatively, 4-chlorotetrazolo[1,5-a]quinoxaline (11f) was obtained after reaction of 2,3-dichloroquinoxaline (10f) with
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2022

Automated grindstone chemistry: a simple and facile way for PEG-assisted stoichiometry-controlled halogenation of phenols and anilines using N-halosuccinimides

  • Dharmendra Das,
  • Akhil A. Bhosle,
  • Amrita Chatterjee and
  • Mainak Banerjee

Beilstein J. Org. Chem. 2022, 18, 999–1008, doi:10.3762/bjoc.18.100

Graphical Abstract
  • of NBS and NIS, the chlorination by NCS was often found sluggish and complete conversion was not observed even after vigorous grinding for 30 min. Nonetheless, the addition of a catalytic amount of H2SO4 (10 mol %) was sufficient to activate NCS and the corresponding chloro derivatives were obtained
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2022

Synthetic strategies for the preparation of γ-phostams: 1,2-azaphospholidine 2-oxides and 1,2-azaphospholine 2-oxides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 889–915, doi:10.3762/bjoc.18.90

Graphical Abstract
  • with excess PCl5. However, the radical chlorination of 2-methylphenyl(methyl)phosphinic chloride (9) gave the desired 2-chloromethylphenyl(methyl)phosphinic chloride (10) in 65% yield with unreacted starting 9 in 25–30%, and the dichlorinated product 11 in 5–10%. The reaction of 2-chloromethylphenyl
PDF
Album
Review
Published 22 Jul 2022

Mechanochemical halogenation of unsymmetrically substituted azobenzenes

  • Dajana Barišić,
  • Mario Pajić,
  • Ivan Halasz,
  • Darko Babić and
  • Manda Ćurić

Beilstein J. Org. Chem. 2022, 18, 680–687, doi:10.3762/bjoc.18.69

Graphical Abstract
  • dichlorinated regioisomers (L5Cl-I and L5Cl-II) (Scheme 1 and Table 1, entry 4). The chlorination of L3 substrate with a primary amine as substituent gave the monochlorinated product L3Cl-I in 46% yield, while the yields of L4Cl-I and L5Cl-I were 85% and 83%, respectively (Table 1, entries 2–4). Although both
  • substrates L4 and L5 contain a tertiary amine as a substituent (NMe2), the chlorination of L5 proceeded much more slowly (Table 1, entries 3 and 4). Neither NCS nor NIS yielded halogenated products with substrate L2 (Table 1, entries 1 and 9). However, the reaction of L2 with NBS gave the monobrominated
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2022

High-speed C–H chlorination of ethylene carbonate using a new photoflow setup

  • Takayoshi Kasakado,
  • Takahide Fukuyama,
  • Tomohiro Nakagawa,
  • Shinji Taguchi and
  • Ilhyong Ryu

Beilstein J. Org. Chem. 2022, 18, 152–158, doi:10.3762/bjoc.18.16

Graphical Abstract
  • Research & Development Group, Nankai Chemical Co. Ltd., 1-1-38 Kozaika, Wakayama 641-0007, Japan Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30010, Taiwan 10.3762/bjoc.18.16 Abstract We report the high-speed C–H chlorination of ethylene carbonate, which gives
  • ethylene carbonate was introduced to the reactor, the residence time was measured to be 15 or 30 s, depending on the slope of the reactor set at 15 or 5°, respectively. Such short time of exposition sufficed the photo C–H chlorination. The partial irradiation of the flow channels also sufficed for the C–H
  • chlorination, which is consistent with the requirement of photoirradiation for the purpose of radical initiation. Near-complete selectivity for single chlorination required the low conversion of ethylene carbonate such as 9%, which was controlled by limited introduction of chlorine gas. At a higher conversion
PDF
Album
Supp Info
Letter
Published 27 Jan 2022

Efficient N-arylation of 4-chloroquinazolines en route to novel 4-anilinoquinazolines as potential anticancer agents

  • Rodolfo H. V. Nishimura,
  • Thiago dos Santos,
  • Valter E. Murie,
  • Luciana C. Furtado,
  • Leticia V. Costa-Lotufo and
  • Giuliano C. Clososki

Beilstein J. Org. Chem. 2021, 17, 2968–2975, doi:10.3762/bjoc.17.206

Graphical Abstract
  • that, the cyclocondensation [29] of the halogenated anthranilamides 6a,b with benzaldehyde followed by dehydrogenation promoted by iodine gave the corresponding quinazolin-4(3H)-ones 7a,b, which we used in the next step without purification. Finally, chlorination [31] of quinazolin-4(3H)-ones 7a,b by
  • was prepared by chlorination of the corresponding quinazolinone (see Supporting Information File 1), in the N-arylation reaction. N-Arylation of 16 with N-methylaniline (9l) afforded N-methyl-N-phenylquinazolin-4-amine (18) in 81% yield (Scheme 5). Subsequently, the reaction of 17 with N
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2021

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • chlorination at the α-position of the ester. The dichloro-substituted intermediate 3k was further cyclized to produce the oxathiolane 56a by reaction with water in the presence of acetonitrile as solvent. The focus of this novel route was to access basic reagents that are useful for the synthesis of 3TC (1
  • -Hydroxyoxathiolane intermediate 56a was isolated in a DKR procedure by Whitehead and co-workers (Scheme 38) [55]. Further, 5-chlorooxathiolane 56 was isolated from chlorination reaction of 5-hydroxyoxathiolane 56a using thionyl chloride in presence of catalytic DMF and dichloromethane solvent. This further reacted
PDF
Album
Review
Published 04 Nov 2021

A novel methodology for the efficient synthesis of 3-monohalooxindoles by acidolysis of 3-phosphate-substituted oxindoles with haloid acids

  • Li Liu,
  • Yue Li,
  • Tiao Huang,
  • Dulin Kong and
  • Mingshu Wu

Beilstein J. Org. Chem. 2021, 17, 2321–2328, doi:10.3762/bjoc.17.150

Graphical Abstract
  • Prathima group established an expedient approach for the direct oxidative chlorination of indole-3-carboxaldehyde to 3-monochlorooxindoles using a combination of NaCl and oxone as the chlorine source and oxidant in a CH3CN/H2O 1:1 system (Scheme 1, reaction 2) [22]. Nearly at the same time, Yu and co
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2021

Base-free enantioselective SN2 alkylation of 2-oxindoles via bifunctional phase-transfer catalysis

  • Mili Litvajova,
  • Emiliano Sorrentino,
  • Brendan Twamley and
  • Stephen J. Connon

Beilstein J. Org. Chem. 2021, 17, 2287–2294, doi:10.3762/bjoc.17.146

Graphical Abstract
  • -alkylated with bromo ester 13. The formed product (i.e., 14) was first amidated and then cyclised using benzylamine 11 to generate spirooxindole 15 in 54% yield and 94% ee. Chlorination with NCS, followed by tert-butyl ester cleavage in TFA/CH2Cl2 provided the final bioactive compound 6 in 93% ee
PDF
Album
Supp Info
Letter
Published 02 Sep 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2021

Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs

  • Jongwoo Son

Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122

Graphical Abstract
  • (see 2b), respectively. Therein, C2 fluorination was favored, and 2a was observed as the major product due to the sterically congested environment at C3 created by the adjacent gem-dimethyl groups. The regioselectivity at the C2 position was observed similarly in a study on Mn-catalyzed chlorination
PDF
Album
Review
Published 26 Jul 2021

Double-headed nucleosides: Synthesis and applications

  • Vineet Verma,
  • Jyotirmoy Maity,
  • Vipin K. Maikhuri,
  • Ritika Sharma,
  • Himal K. Ganguly and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2021, 17, 1392–1439, doi:10.3762/bjoc.17.98

Graphical Abstract
  • strand interactions were observed in a DNA–DNA duplex [43]. TIPDS protection of uridine (16), followed by the treatment of the product with acetic anhydride/acetic acid in DMSO produced the protected nucleoside 17 [45][46] (Scheme 5). Next, the fully protected nucleoside 17 was subjected to chlorination
PDF
Album
Review
Published 08 Jun 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Structural effects of meso-halogenation on porphyrins

  • Keith J. Flanagan,
  • Maximilian Paradiz Dominguez,
  • Zoi Melissari,
  • Hans-Georg Eckhardt,
  • René M. Williams,
  • Dáire Gibbons,
  • Caroline Prior,
  • Gemma M. Locke,
  • Alina Meindl,
  • Aoife A. Ryan and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2021, 17, 1149–1170, doi:10.3762/bjoc.17.88

Graphical Abstract
  • unexpected. The mechanism of the formation of 4 is not easy to clarify, and presently, there is no indication of whether the reaction proceeds via a homolytic or heterolytic process. Notably, similar unexpected chlorination reactions have been described in the past [56][57]. While the metallated form of the
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2021

Manganese/bipyridine-catalyzed non-directed C(sp3)–H bromination using NBS and TMSN3

  • Kumar Sneh,
  • Takeru Torigoe and
  • Yoichiro Kuninobu

Beilstein J. Org. Chem. 2021, 17, 885–890, doi:10.3762/bjoc.17.74

Graphical Abstract
  • reported the manganese-porphyrin-catalyzed chlorination and bromination of C(sp3)−H bonds, respectively (Scheme 1d). Groves et al. also reported the manganese-salen-catalyzed fluorination of benzylic C(sp3)−H bonds [49]. Although these methods are efficient, they have a limited substrate scope
PDF
Album
Supp Info
Letter
Published 22 Apr 2021

Synthesis of bis(aryloxy)fluoromethanes using a heterodihalocarbene strategy

  • Carl Recsei and
  • Yaniv Barda

Beilstein J. Org. Chem. 2021, 17, 813–818, doi:10.3762/bjoc.17.70

Graphical Abstract
  • )chloromethane via a published protocol for radical chlorination of an acetal due to the presence of vulnerable benzylic methyl groups proximate to the acetal [10]. We then synthesized carboxylic acid 9, from which we anticipated creating an aryloxylchlorofluoromethane (10, X = Cl, Scheme 4) via
PDF
Album
Supp Info
Letter
Published 12 Apr 2021

Metal-free visible-light-enabled vicinal trifluoromethyl dithiolation of unactivated alkenes

  • Xiaojuan Li,
  • Qiang Zhang,
  • Weigang Zhang,
  • Jinzhu Ma,
  • Yi Wang and
  • Yi Pan

Beilstein J. Org. Chem. 2021, 17, 551–557, doi:10.3762/bjoc.17.49

Graphical Abstract
  • approaches for the trifluoromethylthio (SCF3) difunctionalization of alkenes, such as cyanation [23], etherification [24][25][26][27], amination [28][29][30], chlorination [31][32], hydrogenation [33], trifluoromethylation [34], phosphonization [35], arylation [36][37][38], trifluoromethylthiolation [39
PDF
Album
Supp Info
Full Research Paper
Published 24 Feb 2021

Synthetic strategies of phosphonodepsipeptides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2021, 17, 461–484, doi:10.3762/bjoc.17.41

Graphical Abstract
  • ) were modest inhibitors. The synthesis started from diphenyl N-Cbz-1-aminoalkylphosphonates 11 (Scheme 1). They were transformed to dimethyl esters via transesterification and further to monomethyl esters 12 via basic hydrolysis. After chlorination with thionyl chloride, the monomethyl esters 12 were
  • tryptophan amide with 4-nitrobenzyl (R)-N-Fmoc 1-amino(cyclohexyl)methylphosphonochloridate (38), which was prepared from diethyl (R)-N-Fmoc 1-amino(cyclohexyl)methylphosphonate (36) via a selective basic hydrolysis, chlorination, esterification with 4-nitrobenzyl alcohol, selective basic hydrolysis, and
  • chlorination. After the treatment of compound 39 with piperidine, the N-terminal free dipeptide was obtained and acylated with hexanedioic anhydride to afford the designed hapten 40 (Scheme 7) [11]. Phosphonodepsioctapeptide 41 was prepared as a variation of the partial sequence of a gene product of erb B-2
PDF
Album
Review
Published 16 Feb 2021

Bipyrrole boomerangs via Pd-mediated tandem cyclization–oxygenation. Controlling reaction selectivity and electronic properties

  • Liliia Moshniaha,
  • Marika Żyła-Karwowska,
  • Joanna Cybińska,
  • Piotr J. Chmielewski,
  • Ludovic Favereau and
  • Marcin Stępień

Beilstein J. Org. Chem. 2020, 16, 895–903, doi:10.3762/bjoc.16.81

Graphical Abstract
  • ], with FeCl3 being particularly notable for its versatility, ease of use, and low price [5]. Nevertheless, the synthetic utility of oxidative couplings is often limited by several factors [6]. Consequently, incomplete ring fusion and various side reactions, e.g., chlorination [7], or unexpected
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2020

Efficient synthesis of piperazinyl amides of 18β-glycyrrhetinic acid

  • Dong Cai,
  • ZhiHua Zhang,
  • Yufan Meng,
  • KaiLi Zhu,
  • LiYi Chen,
  • ChangXiang Yu,
  • ChangWei Yu,
  • ZiYi Fu,
  • DianShen Yang and
  • YiXia Gong

Beilstein J. Org. Chem. 2020, 16, 798–808, doi:10.3762/bjoc.16.73

Graphical Abstract
  • originally reported by Sommerwerk [16] (Scheme 1). In this case, 18β-glycyrrhetinic acid reacted with acetic anhydride in the presence of triethylamine to give 3-acetyl-18β-glycyrrhetinic acid (2), which by successive chlorination with oxalyl chloride yielded acyl chloride 3. Without isolation, the
  • intermediate 3 reacted with piperazine to give 18β-glycyrrhetinic acid piperazinyl amide 4. The total yield of chlorination and amidation reactions was 67%. In the beginning, the reaction of acyl chloride 3 with piperazine was taken as a prototypical case to ascertain and screen the experimental conditions
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2020

Synthesis of disparlure and monachalure enantiomers from 2,3-butanediacetals

  • Adam Drop,
  • Hubert Wojtasek and
  • Bożena Frąckowiak-Wojtasek

Beilstein J. Org. Chem. 2020, 16, 616–620, doi:10.3762/bjoc.16.57

Graphical Abstract
  • enantioselective reactions, such as the Sharpless epoxidation [19][20][21][22][23][24], asymmetric dihydroxylation [25][26], chloroallyloboronation [27], or iodolactonization [28]. Most recently a method using the asymmetric chlorination of dodecanal by LiCl in the presence of a chiral imidazolidinone catalyst has
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Architecture and synthesis of P,N-heterocyclic phosphine ligands

  • Wisdom A. Munzeiwa,
  • Bernard Omondi and
  • Vincent O. Nyamori

Beilstein J. Org. Chem. 2020, 16, 362–383, doi:10.3762/bjoc.16.35

Graphical Abstract
  • quinazolinones 89. Subsequent chlorination of the quinazolinone resulted in the formation of 4-chloroquinazoline intermediates 90. The subsequent Pd-catalyzed coupling of 90 and arylboronic acid 91 gave the methoxy intermediates 92 in reasonable yields. The demethylation of the 2-(2-pyridyl)methoxy intermediate
  • was obtained by the reaction of ʟ-valinol with in situ-generated indolylacyl chloride. The latter compound was obtained through an oxalic acid-mediated chlorination of carboxylic acid 96 with dimethylformamide as catalyst in dichloromethane. Next, oxazoline derivative 98 was obtained via a
  • carbon dioxide and phenyllithium gives the phosphine ferrocene carboxylic acid 152 as the major reagent. Oxidation of the phosphine using hydrogen peroxide generated the phosphine oxide 153. In situ chlorination of the carboxylic acid followed by addition of the chiral amino alcohols gave the phosphoryl
PDF
Album
Review
Published 12 Mar 2020

Formal preparation of regioregular and alternating thiophene–thiophene copolymers bearing different substituents

  • Atsunori Mori,
  • Keisuke Fujita,
  • Chihiro Kubota,
  • Toyoko Suzuki,
  • Kentaro Okano,
  • Takuya Matsumoto,
  • Takashi Nishino and
  • Masaki Horie

Beilstein J. Org. Chem. 2020, 16, 317–324, doi:10.3762/bjoc.16.31

Graphical Abstract
  • coupling is followed by chlorination, this protocol exploits the improved deprotonation efficiency of 2 toward 3’-unsubstituted 3-substituted bithiophene, and this method enabled the synthesis of 4 (where R1 = H) regioselectively. Polymerization of 4 (where R1 = n-hexyl and R2 = (CH2)4Si(Me2)OSiMe3) was
PDF
Album
Full Research Paper
Published 05 Mar 2020

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • prepared a library of monobrominated compounds using this simple yet effective strategy. A plausible mechanism is shown in Figure 21. Chlorination of arenes with Mes-Acr-MeClO4 (2): Ohkubo et al. observed that only under aerobic photocatalytic conditions, C–H chlorination of trimethoxybenzene (TMB) occurs
  • in situ, followed by ipso-chlorination, which yielded the desired products with high regioselectivity. The substrate scope is displayed in Scheme 23, and the mechanism involved in this transformation is shown in Figure 23. Monofluorination of arenes: Direct monofluorination has always been a
  • of substituted phenols using QuCN. Synthesis of substituted phenols with DDQ (5). Aerobic bromination of arenes using an acridinium-based photocatalyst. Aerobic bromination of arenes with anthraquinone. Chlorination of benzene derivatives with Mes-Acr-MeClO4 (2). Chlorination of arenes with 4CzIPN
PDF
Album
Review
Published 26 Feb 2020
Other Beilstein-Institut Open Science Activities