Search results

Search for "hypervalent iodine reagents" in Full Text gives 52 result(s) in Beilstein Journal of Organic Chemistry.

Glycosylation reactions mediated by hypervalent iodine: application to the synthesis of nucleosides and carbohydrates

  • Yuichi Yoshimura,
  • Hideaki Wakamatsu,
  • Yoshihiro Natori,
  • Yukako Saito and
  • Noriaki Minakawa

Beilstein J. Org. Chem. 2018, 14, 1595–1618, doi:10.3762/bjoc.14.137

Graphical Abstract
  • glycosylation of the sulfoxide 32 could be performed in the same flask, the reaction could bypass two of the reaction steps and would directly produce 4’-thionucleoside 35 from 31. Indeed, the utilization of hypervalent iodine would have enabled this short-cut reaction (Figure 2). Hypervalent iodine reagents
  • reported by Kita and co-workers [44]. Their paper prompted Nishizono et al. to study the glycosylation reaction for 4’-thionucleosides using hypervalent iodine reagents. As a 4-thiosugar donor, 2-p-methoxybenzoate derivative 36 was prepared following Matsuda’s method as shown in Scheme 2, and then was
  • reaction of 36 with iodosylbenzene (PhI=O) proceeded stereoselectively and gave only the β-anomer of 37 in 53% yield [45] (Scheme 4). The mechanism of hypervalent iodine-mediated glycosylation can be expressed as shown in Figure 3. The activated hypervalent iodine reagents in the presence of TMSOTf reacted
PDF
Album
Review
Published 28 Jun 2018

Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis

  • Gwendal Grelier,
  • Benjamin Darses and
  • Philippe Dauban

Beilstein J. Org. Chem. 2018, 14, 1508–1528, doi:10.3762/bjoc.14.128

Graphical Abstract
  • application of modern transition-metal-catalyzed methods. Simple hypervalent iodine reagents can now be considered as valuable building blocks in the synthesis of both polyfunctionalized compounds and complex polycyclic skeletons. We believe that the application of this strategy could be a source of
PDF
Album
Review
Published 21 Jun 2018

Synthesis of trifluoromethylated 2H-azirines through Togni reagent-mediated trifluoromethylation followed by PhIO-mediated azirination

  • Jiyun Sun,
  • Xiaohua Zhen,
  • Huaibin Ge,
  • Guangtao Zhang,
  • Xuechan An and
  • Yunfei Du

Beilstein J. Org. Chem. 2018, 14, 1452–1458, doi:10.3762/bjoc.14.123

Graphical Abstract
  • -dimethyl-1,2-benziodoxole (1’, Figure 2), are effective and efficient hypervalent iodine reagents for trifluoromethylation reactions of a variety of substrates [22][23]. These reagents have found wide applications in the area of organofluorine chemistry, synthetic method development as well as medicinal
  • [52][53][54][55] have been developed for accessing this exclusive class of heterocycles. In our previous works, we have realized the application of hypervalent iodine reagents for the construction of the 2H-azirine skeleton starting from enamines 2 via intramolecular oxidative cyclization (Scheme 1
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Atom-economical group-transfer reactions with hypervalent iodine compounds

  • Andreas Boelke,
  • Peter Finkbeiner and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2018, 14, 1263–1280, doi:10.3762/bjoc.14.108

Graphical Abstract
  • -economical transformations using hypervalent iodine reagents (iodanes) as electrophilic group-transfer reagents. Iodanes, in particular iodonium salts, are well-balanced reagents in terms of stability, reactivity and synthetic and/or commercial availability and therefore it is not surprising to see these
PDF
Album
Review
Published 30 May 2018

A survey of chiral hypervalent iodine reagents in asymmetric synthesis

  • Soumen Ghosh,
  • Suman Pradhan and
  • Indranil Chatterjee

Beilstein J. Org. Chem. 2018, 14, 1244–1262, doi:10.3762/bjoc.14.107

Graphical Abstract
  • last 25 years. This review highlights the contribution of different chiral hypervalent iodine reagents in diverse asymmetric conversions. Keywords: alkene functionalization; asymmetric synthesis; hypervalent iodine; organocatalysis; oxidation; Introduction It is more than one century ago since the
  • reagents [2][3][4][5][6][7][8][9][10][11][12][13][14]. These compounds feature a unique three-centered four-electron bond [15][16][17][18][19][20] that renders them valuable and important alternatives to transition-metal chemistry. Over the last 25 years hypervalent iodine reagents have gained growing
  • turned the attention of the scientific community towards the evolution of new chiral hypervalent iodine reagents. In recent years, many complex synthetic challenges have been successfully addressed by applying these reagents [21][22]. The superior advantage of these reagents lies in their strong
PDF
Album
Review
Published 30 May 2018

Rhodium-catalyzed C–H functionalization of heteroarenes using indoleBX hypervalent iodine reagents

  • Erwann Grenet,
  • Ashis Das,
  • Paola Caramenti and
  • Jérôme Waser

Beilstein J. Org. Chem. 2018, 14, 1208–1214, doi:10.3762/bjoc.14.102

Graphical Abstract
  • heteroarenes was realized using the benziodoxolone hypervalent iodine reagents indoleBXs. Functionalization of the C–H bond in bipyridinones and quinoline N-oxides catalyzed by a rhodium complex allowed to incorporate indole rings into aza-heteroaromatic compounds. These new transformations displayed complete
  • nitrogen and a transition metal catalyst (reaction 1, Scheme 1A) [11][12][13][14][15][16][17][18][19]. In particular, Li and co-workers have used ethynylbenziodoxolone (EBX) hypervalent iodine reagents to achieve a regiodivergent alkynylation of the pyridinone core employing either a gold(I) or a rhodium
  • (III) catalyst for C-5 and C-6 functionalization, respectively [13]. Hypervalent iodine reagents in general [20], and benziodoxole derivatives in particular [21], have found broad application in synthetic chemistry. Aryl iodonium salts have been used successfully in transition-metal-catalyzed
PDF
Album
Supp Info
Letter
Published 25 May 2018

Rapid transformation of sulfinate salts into sulfonates promoted by a hypervalent iodine(III) reagent

  • Elsa Deruer,
  • Vincent Hamel,
  • Samuel Blais and
  • Sylvain Canesi

Beilstein J. Org. Chem. 2018, 14, 1203–1207, doi:10.3762/bjoc.14.101

Graphical Abstract
  • aromatic systems or cyclic ethers through a ring opening pathway. Keywords: hypervalent iodine; oxidation; sulfinates; sulfonation; sulfonium; Introduction Over the past few decades, hypervalent iodine reagents [1][2][3][4] have emerged as versatile and environmentally benign substitutes for heavy metal
  • diol derivative containing a linear chain in only one step. One alcohol is available as a leaving group and the second is protected by conversion into a trichloroacetate moiety (Scheme 4). Conclusion A novel oxidative method for producing sulfonates from sulfinates using hypervalent iodine reagents has
PDF
Album
Supp Info
Letter
Published 24 May 2018

Recyclable hypervalent-iodine-mediated solid-phase peptide synthesis and cyclic peptide synthesis

  • Dan Liu,
  • Ya-Li Guo,
  • Jin Qu and
  • Chi Zhang

Beilstein J. Org. Chem. 2018, 14, 1112–1119, doi:10.3762/bjoc.14.97

Graphical Abstract
  • . Hypervalent iodine reagents have drawn researchers’ considerable attentions due to their versatile reactivity, low toxicity, ready availability, environmental friendliness, and regenerability [11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27]. Our group has dedicated to the peptide synthesis
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2018

Iodine(III)-mediated halogenations of acyclic monoterpenoids

  • Laure Peilleron,
  • Tatyana D. Grayfer,
  • Joëlle Dubois,
  • Robert H. Dodd and
  • Kevin Cariou

Beilstein J. Org. Chem. 2018, 14, 1103–1111, doi:10.3762/bjoc.14.96

Graphical Abstract
  • halogenations with increased selectivity. In this regard, hypervalent iodine reagents [6] have emerged as particularly versatile mediators [7][8][9][10]. We have shown that electrophilic halogenations [11][12][13], or pseudohalogenations [14] can be triggered by combining an iodine(III) derivative with a
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Selective carboxylation of reactive benzylic C–H bonds by a hypervalent iodine(III)/inorganic bromide oxidation system

  • Toshifumi Dohi,
  • Shohei Ueda,
  • Kosuke Iwasaki,
  • Yusuke Tsunoda,
  • Koji Morimoto and
  • Yasuyuki Kita

Beilstein J. Org. Chem. 2018, 14, 1087–1094, doi:10.3762/bjoc.14.94

Graphical Abstract
  • , reports aimed at realizing efficient and selective metal-free C(sp3)–H transformations are rather limited; however, investigations by several research groups are still ongoing [15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30]. Hypervalent iodine reagents are now widely accepted as a safe
  • oxidations was recognized for displaying the new reactivities of hypervalent iodine reagents toward C(sp3)–H bonds [38][39]. By exploiting the radical behavior of trivalent iodine reagents discovered previously [40][41], the activation of trivalent iodine reagents, e.g., phenyliodine(III) diacetate (PIDA
PDF
Album
Supp Info
Letter
Published 16 May 2018

Hypervalent iodine-guided electrophilic substitution: para-selective substitution across aryl iodonium compounds with benzyl groups

  • Cyrus Mowdawalla,
  • Faiz Ahmed,
  • Tian Li,
  • Kiet Pham,
  • Loma Dave,
  • Grace Kim and
  • I. F. Dempsey Hyatt

Beilstein J. Org. Chem. 2018, 14, 1039–1045, doi:10.3762/bjoc.14.91

Graphical Abstract
  • mechanism could be occurring with metalloid groups such as silicon and boron. Hypervalent iodine reagents such as Zefirov’s reagent, cyclic iodonium reagents, iodosobenzene/BF3, and PhI(OAc)2/BF3 or triflate-based activators were tested. A desirable facet of the reported reaction is that iodine(I) is
  • that many of these useful reagents became a staple in synthetic chemistry laboratories [1][2]. Although hypervalent iodine reagents are commonly used in oxidation reactions, they have also found their own niche in useful C–C bond-formation and C–H activation reactions [3][4][5]. One such C–C bond
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2018

Hypervalent iodine-mediated Ritter-type amidation of terminal alkenes: The synthesis of isoxazoline and pyrazoline cores

  • Sang Won Park,
  • Soong-Hyun Kim,
  • Jaeyoung Song,
  • Ga Young Park,
  • Darong Kim,
  • Tae-Gyu Nam and
  • Ki Bum Hong

Beilstein J. Org. Chem. 2018, 14, 1028–1033, doi:10.3762/bjoc.14.89

Graphical Abstract
  • 3a albeit in low yield (Table 1, entry 1). The background reaction mediated by a Lewis acid seemed plausible via an electrophilic activation of the double bond. When the reaction is performed in the presence of hypervalent iodine reagents such as PIFA ([bis(trifluoroacetoxy)iodo]benzene), PhI(NPhth)2
PDF
Album
Supp Info
Letter
Published 11 May 2018

Chlorination of phenylallene derivatives with 1-chloro-1,2-benziodoxol-3-one: synthesis of vicinal-dichlorides and chlorodienes

  • Zhensheng Zhao and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2018, 14, 796–802, doi:10.3762/bjoc.14.67

Graphical Abstract
  • vicinal-dichlorination of phenylallenes; however, no such chlorination reaction has yet been achieved [29][30][31][32][33][34]. Recent reports of reactions between hypervalent iodine reagents and phenylallenes have highlighted the possible product outcomes achievable through ionic and radical reaction
  • a 1,2-phenyl shift (C to D, Scheme 1c). There has been no investigation of the chemistry between arylallenes and chlorinated hypervalent iodine reagents, and given the differing reactivities that might be achievable with (dichloroiodo)benzene [40] (1a) and chlorobenziodoxolone (1b) [30][41][42][43
PDF
Album
Supp Info
Letter
Published 09 Apr 2018

Enantioselective dioxytosylation of styrenes using lactate-based chiral hypervalent iodine(III)

  • Morifumi Fujita,
  • Koki Miura and
  • Takashi Sugimura

Beilstein J. Org. Chem. 2018, 14, 659–663, doi:10.3762/bjoc.14.53

Graphical Abstract
  • the electronic and steric properties of the aryl group and the heteroatomic ligand coordinated to the iodine atom. Optically active hypervalent iodine compounds contain chiral ligands or chiral aryl groups. Several types of optically active hypervalent iodine reagents and catalysts have been developed
  • . [15][16][17] reported the dioxytosylation of styrene (1a, Scheme 1). Chiral hypervalent iodine reagents 2 bearing a 1-methoxyethyl side chain were used for enantiocontrol of the dioxytosylation, and the maximum enantiomeric excess (ee) of the product 3a reached 65%. Despite recent rapid progress in
  • the field of asymmetric oxidation achieved by chiral hypervalent iodine compounds, there has been no subsequent examination of dioxytosylation, which can be used as a standard reaction for comparing the enantiocontrolling ability of chiral hypervalent iodine reagents. The design of chiral hypervalent
PDF
Album
Supp Info
Letter
Published 20 Mar 2018

Synthesis of fluoro-functionalized diaryl-λ3-iodonium salts and their cytotoxicity against human lymphoma U937 cells

  • Prajwalita Das,
  • Etsuko Tokunaga,
  • Hidehiko Akiyama,
  • Hiroki Doi,
  • Norimichi Saito and
  • Norio Shibata

Beilstein J. Org. Chem. 2018, 14, 364–372, doi:10.3762/bjoc.14.24

Graphical Abstract
  • developed, including Shibata reagents I [20] and II [21] (trifluoromethylation reagent 1 and trifluoromethylthiolation reagent 2a, respectively), pentafluorophenylating reagent 2b and several hypervalent iodine reagents, i.e., diaryliodonium salts with a mesitylene ligand (3a–o) and a triisopropylphenyl
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2018

Difunctionalization of alkenes with iodine and tert-butyl hydroperoxide (TBHP) at room temperature for the synthesis of 1-(tert-butylperoxy)-2-iodoethanes

  • Hao Wang,
  • Cui Chen,
  • Weibing Liu and
  • Zhibo Zhu

Beilstein J. Org. Chem. 2017, 13, 2023–2027, doi:10.3762/bjoc.13.200

Graphical Abstract
  • light [19][20], hypervalent iodine reagents [21][22], acids [23], organoammonium iodides [24] and iodine [25]. These catalysts are often employed in combination with a peroxide and generally produce an organoperoxide. Organic peroxides are important and useful compounds because of their unique chemical
PDF
Album
Supp Info
Letter
Published 28 Sep 2017

Iodoarene-catalyzed cyclizations of N-propargylamides and β-amidoketones: synthesis of 2-oxazolines

  • Somaia Kamouka and
  • Wesley J. Moran

Beilstein J. Org. Chem. 2017, 13, 1823–1827, doi:10.3762/bjoc.13.177

Graphical Abstract
  • cyclization of N-propargylamides and the second involves the cyclization of β-amidoketones. These are proposed to proceed through different mechanisms and have different substrate scopes. Keywords: amides; catalysis; cyclization; hypervalent iodine; isoxazolines; Introduction Hypervalent iodine reagents are
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2017

Recent advances in the electrochemical construction of heterocycles

  • Robert Francke

Beilstein J. Org. Chem. 2014, 10, 2858–2873, doi:10.3762/bjoc.10.303

Graphical Abstract
  • hypervalent iodine reagents [9][10][11][12], and homogeneously or heterogeneously catalyzed multicomponent reactions [13][14]. Moreover, radical cyclizations predominantly conducted using Bu3SnH in the presence of azobisisobutyronitrile (AIBN) play a crucial role [15][16]. However, all these methods require
PDF
Album
Review
Published 03 Dec 2014

IBD-mediated oxidative cyclization of pyrimidinylhydrazones and concurrent Dimroth rearrangement: Synthesis of [1,2,4]triazolo[1,5-c]pyrimidine derivatives

  • Caifei Tang,
  • Zhiming Li and
  • Quanrui Wang

Beilstein J. Org. Chem. 2013, 9, 2629–2634, doi:10.3762/bjoc.9.298

Graphical Abstract
  • aldehydes, affording the corresponding hydrazones 4. In general, aromatic aldehydes provided higher yields than aliphatic aldehydes. In recent years, organo hypervalent iodine reagents have drawn considerable interests as versatile and environmentally benign oxidants with many applications in organic
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2013

Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

  • Grégory Landelle,
  • Armen Panossian,
  • Sergiy Pazenok,
  • Jean-Pierre Vors and
  • Frédéric R. Leroux

Beilstein J. Org. Chem. 2013, 9, 2476–2536, doi:10.3762/bjoc.9.287

Graphical Abstract
  • ”, and balancing the electron transfer to the perfluoroalkyl iodide. In 2010, A. Togni and coworkers studied the trifluoromethylation of pyrroles, indoles, and various other heteroarenes or arenes in the presence of zinc salts, and with Togni’s hypervalent iodine reagents as the CF3-source. Yields were
PDF
Album
Review
Published 15 Nov 2013

A one-pot synthesis of 3-trifluoromethyl-2-isoxazolines from trifluoromethyl aldoxime

  • Raoni S. B. Gonçalves,
  • Michael Dos Santos,
  • Guillaume Bernadat,
  • Danièle Bonnet-Delpon and
  • Benoit Crousse

Beilstein J. Org. Chem. 2013, 9, 2387–2394, doi:10.3762/bjoc.9.275

Graphical Abstract
  • available reagents have been employed under metal-free conditions. A group [27] reported that the hypervalent iodine reagents (diacetoxyiodo)benzene (DIB) and phenyliodine bis(trifluoroacetate) (PIFA) could successfully promote the oxidation of aldoximes to the corresponding nitrile oxide. Those reagents
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2013

Zinc–gold cooperative catalysis for the direct alkynylation of benzofurans

  • Yifan Li and
  • Jérôme Waser

Beilstein J. Org. Chem. 2013, 9, 1763–1767, doi:10.3762/bjoc.9.204

Graphical Abstract
  • the use of ethynylbenziodoxolones, which are cyclic hypervalent iodine reagents [22][23]. Nevertheless, the conditions we have used for other heterocycles gave only very low yields in the case of benzofurans. Herein, we would like to report the first catalytic direct C2-alkynylation of benzofurans 7
PDF
Album
Supp Info
Letter
Published 29 Aug 2013

Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation

  • Nida Ambreen,
  • Ravi Kumar and
  • Thomas Wirth

Beilstein J. Org. Chem. 2013, 9, 1437–1442, doi:10.3762/bjoc.9.162

Graphical Abstract
  • –Doering oxidation [3]. In synthetic chemistry, selective methods for the oxidation of alcohols are highly sought after, and methods with the ability to differentiate between various functional groups are desired. The use of hypervalent iodine reagents in organic chemistry has increased during recent years
  • . Enhanced mass- and heat transfer and short diffusion distances can lead to better yields within shorter reaction times [15]. Herein, we describe the development of continuous-flow systems using hypervalent iodine reagents in the TEMPO-mediated oxidation of alcohols with the advantage of significantly
PDF
Album
Full Research Paper
Published 17 Jul 2013

Organic synthesis using (diacetoxyiodo)benzene (DIB): Unexpected and novel oxidation of 3-oxo-butanamides to 2,2-dihalo-N-phenylacetamides

  • Wei-Bing Liu,
  • Cui Chen,
  • Qing Zhang and
  • Zhi-Bo Zhu

Beilstein J. Org. Chem. 2012, 8, 344–348, doi:10.3762/bjoc.8.38

Graphical Abstract
  • chemical synthesis. This protocol not only adds a new aspect to reactions that use other hypervalent iodine reagents but also provides a wide space for the synthesis of disubstituted acetamides. Keywords: cleavage of carbon–carbon bond; (diacetoxyiodo)benzene; difunctionalized acetamides; novel oxidation
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2012

Dioxane dibromide mediated bromination of substituted coumarins under solvent-free conditions

  • Subrata Kumar Chaudhuri,
  • Sanchita Roy and
  • Sanjay Bhar

Beilstein J. Org. Chem. 2012, 8, 323–329, doi:10.3762/bjoc.8.35

Graphical Abstract
  • [8], Et4N+Br− in the presence of hypervalent iodine reagents [9], and NBS in tetrabutylammonium bromide under molten salt conditions [10]. There is a recent report of the preparation of 3-bromocoumarins from acyclic precursors through bromination of a Wittig reagent with NBS followed by tandem Wittig
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2012
Other Beilstein-Institut Open Science Activities