Search results

Search for "phenol" in Full Text gives 358 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Efficient modification of peroxydisulfate oxidation reactions of nitrogen-containing heterocycles 6-methyluracil and pyridine

  • Alfiya R. Gimadieva,
  • Yuliya Z. Khazimullina,
  • Aigiza A. Gilimkhanova and
  • Akhat G. Mustafin

Beilstein J. Org. Chem. 2024, 20, 2599–2607, doi:10.3762/bjoc.20.219

Graphical Abstract
  • : oxidation; 6-methyluracil; peroxydisulfate; phthalocyanine catalysts; pyridine; Introduction The Elbs and Boyland–Sims peroxydisulfate oxidation reactions offer a convenient means of introducing the hydroxy function into phenols and aromatic amines [1]. The oxidation of phenol using peroxydisulfate was
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • -pyridyl)phenol (23) as an activator, 3 equivalents of HFIP and a slightly different catalyst, 3,3’-bis(3,5-bis(trifluoromethyl)phenyl)-BINOL 21 at 20 mol % loading (Scheme 5). Interestingly, the reaction showed an opposite trend and worked better with Z-geranylboronic acid (14). The scope was tested over
PDF
Album
Review
Published 16 Sep 2024

Heterocycle-guided synthesis of m-hetarylanilines via three-component benzannulation

  • Andrey R. Galeev,
  • Maksim V. Dmitriev,
  • Alexander S. Novikov and
  • Andrey N. Maslivets

Beilstein J. Org. Chem. 2024, 20, 2208–2216, doi:10.3762/bjoc.20.188

Graphical Abstract
  • condensation by introducing additional functional groups into the amine moiety (Figure 3). Substituted arylamines bearing alcohol (3ae), phenol (3ad), alkene (3bi), dimethyl acetal (3bj) functionality can be accessed in good yields. Reaction of 1,3-diketone 1a with a non-amidine type heterocyclic amine, 3
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

A new platform for the synthesis of diketopyrrolopyrrole derivatives via nucleophilic aromatic substitution reactions

  • Vitor A. S. Almodovar and
  • Augusto C. Tomé

Beilstein J. Org. Chem. 2024, 20, 1933–1939, doi:10.3762/bjoc.20.169

Graphical Abstract
  • aromatic substitution; phenol; thiol; Introduction Diketopyrrolopyrroles (DPPs) are a class of organic pigments discovered by serendipity in the 1970s [1][2]. Generally, N-unsubstituted DPP derivatives exhibit high melting points, low solubility in most solvents, and strong absorption in the visible
  • effective nucleophile. So, in this case, Cs2CO3 was employed as the base. The reaction of DPP 2 with methyl 4-hydroxybenzoate yielded compounds 3d and 4d in 56% and 14% yield, respectively. When reacting with 4-(2,4,4-trimethylpentan-2-yl)phenol, the disubstituted compound 3e was obtained in 63% yield. In
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Synthesis of polycyclic aromatic quinones by continuous flow electrochemical oxidation: anodic methoxylation of polycyclic aromatic phenols (PAPs)

  • Hiwot M. Tiruye,
  • Solon Economopoulos and
  • Kåre B. Jørgensen

Beilstein J. Org. Chem. 2024, 20, 1746–1757, doi:10.3762/bjoc.20.153

Graphical Abstract
  • oxidation forms the p-quinones when possible. However, the o-quinones are formed in good yields from substrates where the para-position of the phenol is part of the further polycyclic aromatic skeleton. The products could be separated from the supporting electrolyte by dispersing the solids in ethyl acetate
  • 0.1 V/s in 0.1 M [NBu4] [PF6] in MeCN and UV–vis spectra of PAPs in DCM (≈10−5 M). A, B: naphthols 1a,b. C, D: chrysenols 3a–c. E, F: phenanthrols 6a–c. Resonance structures of the phenoxonium cation formed from 2-chrysenol (3a). Formation of phenoxonium cation in the anodic oxidation of phenol
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2024

Syntheses and medicinal chemistry of spiro heterocyclic steroids

  • Laura L. Romero-Hernández,
  • Ana Isabel Ahuja-Casarín,
  • Penélope Merino-Montiel,
  • Sara Montiel-Smith,
  • José Luis Vega-Báez and
  • Jesús Sandoval-Ramírez

Beilstein J. Org. Chem. 2024, 20, 1713–1745, doi:10.3762/bjoc.20.152

Graphical Abstract
  • androgenic activity. Poirier’s group reported two methodologies to prepare spiromorpholin-3-ones from a β-amino alcohol functionality [39]. Spiro compounds were synthesized starting from estrone, in which the phenol group was protected as a methoxymethyl ether. Then, the protected compound was subjected to
PDF
Album
Review
Published 24 Jul 2024

Chemo-enzymatic total synthesis: current approaches toward the integration of chemical and enzymatic transformations

  • Ryo Tanifuji and
  • Hiroki Oguri

Beilstein J. Org. Chem. 2024, 20, 1693–1712, doi:10.3762/bjoc.20.151

Graphical Abstract
  • bisorbicillinoid family. Substrate 33 for SorbC-catalyzed enzymatic transformation was synthesized in 3 steps from phenol 35 via formylation and subsequent reduction to introduce a methyl group, followed by a Friedel–Crafts acylation with 36 (Scheme 4B) [39][40]. The in vitro enzymatic transformation of 33 by
  • phenol 46 yields moracin C (47). As the final steps in the biosynthesis of 3, oxidation of the prenyl group of 47 to diene 48 and the subsequent DA reaction with dienophile 44 should theoretically be catalyzed by oxidase and Diels–Alderase, respectively. However, despite effort over several decades
  • utilizing the successfully overexpressed Diels–Alderase, MaDA (Scheme 5C). The chemical synthesis of 54, tri-O-acetylated precursor of the diene component 48, commenced from phenol 50. Iodination and O-acetylations of 50 followed by coupling with phosphorus ylide 51 afforded aryl iodide 52. Subsequent
PDF
Album
Review
Published 23 Jul 2024

Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty

  • Weimao Zhong and
  • Vinayak Agarwal

Beilstein J. Org. Chem. 2024, 20, 1635–1651, doi:10.3762/bjoc.20.146

Graphical Abstract
  • between polybrominated phenol biosynthetic enzymes in diverse marine microbial genera will undoubtedly complement the wide distribution of these natural products in the marine metabolome. All marine bacteria discussed in this section are members of commensal or symbiotic microbiomes of marine
PDF
Album
Review
Published 17 Jul 2024

Supramolecular assemblies of amphiphilic donor–acceptor Stenhouse adducts as macroscopic soft scaffolds

  • Ka-Lung Hung,
  • Leong-Hung Cheung,
  • Yikun Ren,
  • Ming-Hin Chau,
  • Yan-Yi Lam,
  • Takashi Kajitani and
  • Franco King-Chi Leung

Beilstein J. Org. Chem. 2024, 20, 1590–1603, doi:10.3762/bjoc.20.142

Graphical Abstract
  • calcium chloride solution, the obtained DAn macroscopic scaffold was washed three times with fresh Milli-Q water, followed by the addition of 0.5 mL of a growth medium consisting of minimum essential medium (MEM α, no phenol red, Gibco), 10% fetal bovine serum (FBS, Gibco), and 1% antibiotic–antimycotic
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

Mining raw plant transcriptomic data for new cyclopeptide alkaloids

  • Draco Kriger,
  • Michael A. Pasquale,
  • Brigitte G. Ampolini and
  • Jonathan R. Chekan

Beilstein J. Org. Chem. 2024, 20, 1548–1559, doi:10.3762/bjoc.20.138

Graphical Abstract
  • alkaloids, containing both Ziziphus and Ceanothus genera. In addition to the subclass defining Tyr-phenol-O to carbon linkage, the cyclopeptide alkaloids of this family are typically oxidatively decarboxylated and N-methylated (Figure 1, adouetine X and Figure 3, ceanothine B) [19][20][21]. Our
  • (Figure 3 and Supporting Information File 2). Malvaceae family The Malvaceae family contains Hibiscus syriacus (Rose of Sharon), the only known producer of hibispeptin-type burpitides (Figure 3, hibispeptin B) [24][25]. These molecules contain a C–C linkage between the phenol derived from tyrosine and the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2024

Synthesis of 2-benzyl N-substituted anilines via imine condensation–isoaromatization of (E)-2-arylidene-3-cyclohexenones and primary amines

  • Lu Li,
  • Na Li,
  • Xiao-Tian Mo,
  • Ming-Wei Yuan,
  • Lin Jiang and
  • Ming-Long Yuan

Beilstein J. Org. Chem. 2024, 20, 1468–1475, doi:10.3762/bjoc.20.130

Graphical Abstract
  • products. Interestingly, when the 2-arylidene-3-cyclohexenones bearing a strong electron-withdrawing group take part in the reaction, a base-promoted phenol formation via self-tautomerization of cyclohexenones emerges as a competing reaction pathway (Scheme 1, this work). Results and Discussion The present
  • pathway appeared to proceed via self-tautomerization, since 2-benzylphenol 5f was separated in 43% yield along with only 23% yield of normal product 4fa. When 4-CN substituted 3-cyclohexanone was investigated, phenol 5o was isolated exclusively. This was probably due to the significantly enhanced acidity
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Domino reactions of chromones with activated carbonyl compounds

  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 1256–1269, doi:10.3762/bjoc.20.108

Graphical Abstract
  • adjacent to the phenol moiety resulted in formation of intermediate L and lactonization gave the final products. The regioselectivity of the cyclization can be explained by steric hindrance of the carbonyl group adjacent to the 2-nitrophenyl moiety containing an ortho-substituent. Interestingly, in case of
  • formation of products 27, the cyclization proceeded by attack of the methylene carbon to the carbonyl group adjacent to the phenol moiety (intermediate N). This might be explained by the fact that the carbonyl adjacent to the perfluoroalkyl group exists as a hydrate which reduces significantly its
PDF
Album
Review
Published 29 May 2024

Auxiliary strategy for the general and practical synthesis of diaryliodonium(III) salts with diverse organocarboxylate counterions

  • Naoki Miyamoto,
  • Daichi Koseki,
  • Kohei Sumida,
  • Elghareeb E. Elboray,
  • Naoko Takenaga,
  • Ravi Kumar and
  • Toshifumi Dohi

Beilstein J. Org. Chem. 2024, 20, 1020–1028, doi:10.3762/bjoc.20.90

Graphical Abstract
  • modifying their physical properties, and stability and controlling the reactivity of arylation processes, as demonstrated in various studies [9][10]. For instance, the Gaunt group reported that the use of a fluoride counterion in diaryliodonium(III) salt can trigger phenol O-arylation by activating the
  • phenolic O–H group with a fluoride anion [11]. Additionally, Muñiz et al. found that the acetate counterion was more effective than chloride, hexafluorophosphate, and trifluoromethane sulfonate for the borylation of diaryliodonium(III) salts [12]. Recently, our group has developed a new method for phenol O
  • -arylation using aryl(2,4,6-trimethoxyphenyl)iodonium(III) acetates [13]. In this process, the acetate ligand acted as a base to activate the phenol group and positioned it in proximity to accomplish the smooth SNAr reaction. The synthesis of diaryliodonium(III) salts with various counterions, such as
PDF
Album
Supp Info
Letter
Published 03 May 2024

Spin and charge interactions between nanographene host and ferrocene

  • Akira Suzuki,
  • Yuya Miyake,
  • Ryoga Shibata and
  • Kazuyuki Takai

Beilstein J. Org. Chem. 2024, 20, 1011–1019, doi:10.3762/bjoc.20.89

Graphical Abstract
  • photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, magnetic susceptibility, and electron-spin resonance (ESR). Experimental Commercially available ACFs (Kuraray, FR-20), of which the precursor was a phenol-resin, were pre-heat-treated in a glass tube at 200 °C
PDF
Album
Supp Info
Letter
Published 02 May 2024

(Bio)isosteres of ortho- and meta-substituted benzenes

  • H. Erik Diepers and
  • Johannes C. L. Walker

Beilstein J. Org. Chem. 2024, 20, 859–890, doi:10.3762/bjoc.20.78

Graphical Abstract
  • rearrangement, amine (±)-27 was then accessible in one additional step. Formation of redox active ester (±)-28 from acid (±)-26 allowed photochemical Minisci reaction to 1,2-BCH (±)-29 and borylation to boronic ester (±)-30. Synthesis of phenol isostere (±)-31 was possible through oxidation of boronic ester
PDF
Album
Review
Published 19 Apr 2024

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • 19 with HCl/Et2O [44]. This selectivity is notable, especially when compared to reports by other groups indicating the formation of the corresponding phenol derivative under prolonged reaction times (see Scheme 9). Honda reported a quantitative yield in the hydrochlorination of 21 with an ethereal
  • potential safety hazards, especially in large-scale reactions [53]. Instead of acetyl chlorides, various other reagents, including pivaloyl chloride, oxalyl chloride, SOCl2, and TMSCl, can be employed to generate HCl. Numerous proton donors, such as water, alcohol, phenol, or acidic C–H groups, have been
  • gas which is responsible for the hydrochlorination. Tian and co-worker reported in a footnote that eugenol (82) when treated with AlCl3 gives the corresponding hydrochlorination product in a mixture with other products (Scheme 14B) [65]. In this case the reaction of phenol with AlCl3 can be suspected
PDF
Album
Review
Published 15 Apr 2024

New variochelins from soil-isolated Variovorax sp. H002

  • Jabal Rahmat Haedar,
  • Aya Yoshimura and
  • Toshiyuki Wakimoto

Beilstein J. Org. Chem. 2024, 20, 692–700, doi:10.3762/bjoc.20.63

Graphical Abstract
  • for 1 h with 10 mg/mL lysozyme. After 10% SDS was added to the tube, the mixture was incubated at room temperature, 60 °C, and then 0 °C, for 5 min durations. AcOK (5 M) and phenol/CHCl3/isoamyl alcohol (25:24:1) were then added, and the resulting solution was gently mixed by inversion and centrifuged
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Photochromic derivatives of indigo: historical overview of development, challenges and applications

  • Gökhan Kaplan,
  • Zeynel Seferoğlu and
  • Daria V. Berdnikova

Beilstein J. Org. Chem. 2024, 20, 228–242, doi:10.3762/bjoc.20.23

Graphical Abstract
  • using heme-containing oxygenases (cytochrome P450 monooxygenases, styrene/indole monooxygenases, flavin-containing monooxygenases, Baeyer–Villiger monooxygenases, etc.) or non-heme iron oxygenases (naphthalene dioxygenases, multicomponent phenol hydroxylases) [5][6][7][8]. The synthetic approaches
  • significant difference in the values of β-angles, which results in some differences in the densities [10]. The solubility of crystalline indigo is poor even in polar solvents such as aniline, nitrobenzene, phenol, phthalic anhydride, DMSO, and DMF upon heating. The reason for the low solubility and high
PDF
Album
Review
Published 07 Feb 2024

Tandem Hock and Friedel–Crafts reactions allowing an expedient synthesis of a cyclolignan-type scaffold

  • Viktoria A. Ikonnikova,
  • Cristina Cheibas,
  • Oscar Gayraud,
  • Alexandra E. Bosnidou,
  • Nicolas Casaretto,
  • Gilles Frison and
  • Bastien Nay

Beilstein J. Org. Chem. 2024, 20, 162–169, doi:10.3762/bjoc.20.15

Graphical Abstract
  • C–C bond adjacent to the hydroperoxide group (Scheme 1a). The best-known application of this reaction is the cumene process, which allows the production of millions of tons of phenol each year [2]. The reaction has also been used in an industrial synthesis of artemisinin [3]. Allylic hydroperoxides
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2024

Using the phospha-Michael reaction for making phosphonium phenolate zwitterions

  • Matthias R. Steiner,
  • Max Schmallegger,
  • Larissa Donner,
  • Johann A. Hlina,
  • Christoph Marschner,
  • Judith Baumgartner and
  • Christian Slugovc

Beilstein J. Org. Chem. 2024, 20, 41–51, doi:10.3762/bjoc.20.6

Graphical Abstract
  • University of Technology, Stremayrgasse 9, 8010 Graz, Austria 10.3762/bjoc.20.6 Abstract The reactions of 2,4-di-tert-butyl-6-(diphenylphosphino)phenol and various Michael acceptors (acrylonitrile, acrylamide, methyl vinyl ketone, several acrylates, methyl vinyl sulfone) yield the respective phosphonium
  • stabilize the initially formed carbanion as the rate-determining step. A preorganization of the carbonyl bearing Michael acceptors allowed for reasonable fast direct proton transfer from the phenol in aprotic solvents. In contrast, acrylonitrile, not capable of forming a similar preorganization, is hardly
  • with several Michael acceptors [34]. In this work we present the formation of stable zwitterions from the reaction of 2,4-di-tert-butyl-6-(diphenylphosphino)phenol (1) and a variety of different Michael acceptors and disclose kinetic investigations on the zwitterion formation with carbonyl and non
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2024

Biphenylene-containing polycyclic conjugated compounds

  • Cagatay Dengiz

Beilstein J. Org. Chem. 2023, 19, 1895–1911, doi:10.3762/bjoc.19.141

Graphical Abstract
  • and the phenol subsequently converted to a triflate. The Pd-catalyzed annulation approach can be conducted sequentially, facilitating the synthesis of polyaromatic hydrocarbons, particularly unsymmetrical ones (Scheme 10) [44]. In this way, compound 48 was synthesized through a two-step process
PDF
Album
Review
Published 13 Dec 2023

Effects of the aldehyde-derived ring substituent on the properties of two new bioinspired trimethoxybenzoylhydrazones: methyl vs nitro groups

  • Dayanne Martins,
  • Roberta Lamosa,
  • Talis Uelisson da Silva,
  • Carolina B. P. Ligiero,
  • Sérgio de Paula Machado,
  • Daphne S. Cukierman and
  • Nicolás A. Rey

Beilstein J. Org. Chem. 2023, 19, 1713–1727, doi:10.3762/bjoc.19.125

Graphical Abstract
  • physiological conditions since the presence of this substituent significantly affects the pKa of the phenol: an apparent value of 5.68 ± 0.02 was obtained. This also impacts the basicity of the azomethine nitrogen and, as a consequence, increases the hydrazone’s susceptibility to hydrolysis. Nevertheless, both
  • ; phenol acidity; ring substituents; XRD; Introduction N-Acylhydrazones are a class of compounds that contain the hydrazonic functional group (–NH–N=C–) attached to an acyl group, which can be modified to generate a range of different structures with varying properties [1]. The versatility of this class
  • display a role in neurodegeneration [38]. A comparative study between these two N-acylhydrazones is interesting, especially considering that they possess different substituents at the same position in the phenol ring: the electron-donating methyl group (hdz-CH3) and the electron-withdrawing nitro group
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
  • - or 3-bromoanisole were also reported) with bromotetradecane in the presence of a copper salt (Figure 10). Then, the deprotection of the phenol function with BBr3 produced 10.2. The deprotonation of the phenol function with NaH in DMF and its reaction with solketal mesylate produced, after the
PDF
Album
Review
Published 08 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • achieve the CDC of THF and phenol C(sp2)–H (Scheme 12) [62]. The role of Pd may be through the formation of a Pd(II) phenolic acid salt from phenol and Pd(OAc)2 to improve the reactivity of phenol. Subsequently, a more complex C(sp2)–H component was employed as a coupling substrate to functionalize the
PDF
Album
Review
Published 06 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023
Other Beilstein-Institut Open Science Activities