Search results

Search for "alkynes" in Full Text gives 497 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthetic approach to 2-alkyl-4-quinolones and 2-alkyl-4-quinolone-3-carboxamides based on common β-keto amide precursors

  • Yordanka Mollova-Sapundzhieva,
  • Plamen Angelov,
  • Danail Georgiev and
  • Pavel Yanev

Beilstein J. Org. Chem. 2023, 19, 1804–1810, doi:10.3762/bjoc.19.132

Graphical Abstract
  • of methods for their synthesis is a very active area of research. Recent contributions to the synthesis of 4-quinolones made use of phosphine-mediated redox cyclization of 1-(2-nitroaryl)prop-2-ynones [39], palladium-catalyzed carbonylative cyclization of 2-bromonitrobenzenes and alkynes [40], TsCl
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2023

Lewis acid-promoted direct synthesis of isoxazole derivatives

  • Dengxu Qiu,
  • Chenhui Jiang,
  • Pan Gao and
  • Yu Yuan

Beilstein J. Org. Chem. 2023, 19, 1562–1567, doi:10.3762/bjoc.19.113

Graphical Abstract
  • nitrogen source (Scheme 1, reaction 2). In 2017, Xu and co-workers [19] developed a copper-mediated annulation reaction to synthesize isoxazoles from two different alkynes. In fact, most methods mostly used highly toxic transition-metal catalysts such as copper metals. In order to develop cheaper and more
  • environmentally friendly catalysts, our laboratory recently developed an alternative approach to the synthesis of isooxazoles starting from 2-methylquinoline and alkynes mediated by Brønsted acids in good yields (Scheme 1, reaction 3) [20]. The utilization of main element metal aluminum salts in organic synthesis
  • 11). With the optimal reaction conditions in hand, various alkynes were examined as dipolarophiles (Scheme 2). A range of functional groups were tolerated in this reaction, such as alkyl, methoxy, halo, and heterocycles. It was found that electron-deficient groups in the phenyl ring (3g–i) were more
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2023

Morpholine-mediated defluorinative cycloaddition of gem-difluoroalkenes and organic azides

  • Tzu-Yu Huang,
  • Mario Djugovski,
  • Sweta Adhikari,
  • Destinee L. Manning and
  • Sudeshna Roy

Beilstein J. Org. Chem. 2023, 19, 1545–1554, doi:10.3762/bjoc.19.111

Graphical Abstract
  • azides without the requirement of alkynes or late-stage modifications. Our initial investigations led us to identify that adding morpholine as a solvent (0.34–0.4 M) in a reaction with 1-(2,2-difluoroethenyl)-4-methylbenzene (1 equiv) and phenyl azide (1.5 equiv) results in the formation of morpholine
  • with an organic azide. A relatively wide range of 1,4,5-trisubstituted-1,2,3-triazoles was obtained in 30–70% yields with high regioselectivity and modest functional group tolerability. This work demonstrates that gem-difluoroalkenes can serve as versatile fluorinated building blocks in lieu of alkynes
PDF
Album
Supp Info
Letter
Published 05 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • of organic compounds, N-(alkyl/arylthio)phthalimides are also considered good candidates for this purpose. In 2017, Sahoo and co-workers established a method for intramolecular annulation of N-(arylthio)phthalimides 14 and N-(arylthio)succinimides 1 with alkynes 15 in the presence of AlCl3 as an
PDF
Album
Review
Published 27 Sep 2023

α-(Aminomethyl)acrylates as acceptors in radical–polar crossover 1,4-additions of dialkylzincs: insights into enolate formation and trapping

  • Angel Palillero-Cisneros,
  • Paola G. Gordillo-Guerra,
  • Fernando García-Alvarez,
  • Olivier Jackowski,
  • Franck Ferreira,
  • Fabrice Chemla,
  • Joel L. Terán and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2023, 19, 1443–1451, doi:10.3762/bjoc.19.103

Graphical Abstract
  • wherein the intermediate enoxyl radical II arising from the addition step evolves via intramolecular addition to tethered alkenes [16][17] or alkynes [18]. We wondered if, in the absence of the pending radical acceptor, the presence of the β-nitrogen atom could nevertheless promote zinc enolate formation
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • + 2] cycloaddition of azides with alkynes as will be discussed later. Jin Zhang et al. used the same base, namely KOt-Bu in the presence of CuCl to obtain the thiazolylidene–Cu(I) complex 20 (Scheme 10) [23]. In 2012, Zhu and co-workers synthesized NHC–CuCl complexes using alkali carbonates (Na2CO3
  • yield by reacting [Cu(CH3CN)4]BF4 with 2 equiv of benzimidazolium salt 38 in the presence of NaOt-Bu (Scheme 14) [28]. The catalytic activity of the complex 39 was studied in the [3 + 2] cycloaddition of azides with alkynes [28]. Coyle et al. reported the synthesis of a series of NHC and ADC (acyclic
  • which showed that all complexes adopted a slightly distorted linear geometry. Furthermore, abnormal-NHC and triazolylidene-based Cu(I) complexes exhibited an outstanding catalytic property towards the [3 + 2] cycloaddition of alkynes with azides. Recently, we have reported the synthesis of NHC
PDF
Album
Review
Published 20 Sep 2023

One-pot nucleophilic substitution–double click reactions of biazides leading to functionalized bis(1,2,3-triazole) derivatives

  • Hans-Ulrich Reissig and
  • Fei Yu

Beilstein J. Org. Chem. 2023, 19, 1399–1407, doi:10.3762/bjoc.19.101

Graphical Abstract
  • azide was combined with a subsequent copper-catalyzed (3 + 2) cycloaddition with terminal alkynes. This one-pot process was developed with a simple model alkyne, but then applied to more complex alkynes bearing enantiopure 1,2-oxazinyl substituents. Hence, the precursor compounds 1,2-, 1,3- or 1,4-bis
  • carbohydrate mimetics, but the reductive cleavage of the 1,2-oxazine rings to aminopyran moieties did not proceed cleanly with these compounds. Keywords: alkynes; azides; copper catalysis; nucleophilic substitution; 1,2-oxazines; Introduction The concept of click reactions [1][2], in particular, the
  • ]). Mechanistic aspects of the CuAAC have been studied in detail [16][17]. Whereas the traditional 1,3-dipolar cycloaddition (Huisgen reaction) [18][19][20] of azides and alkynes requires often – but not always – relatively harsh conditions and proceeds with moderate regioselectivity only [21], the copper
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2023

Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation–cyclization–iodination–alkylation sequence

  • Nadia Ledermann,
  • Alae-Eddine Moubsit and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2023, 19, 1379–1385, doi:10.3762/bjoc.19.99

Graphical Abstract
  • generated by a consecutive four-component reaction starting from ortho-haloanilines, terminal alkynes, N-iodosuccinimide, and alkyl halides in yields of 11–69%. Initiated by a copper-free alkynylation, followed by a base-catalyzed cyclizive indole formation, electrophilic iodination, and finally
  • -catalyzed processes for accessing indoles have become attractive alternatives over the past decades [19][20][21][22][23][24]. Besides Larock's indole synthesis employing alkyne anellation [25] and Cacchi's cyclization of ortho-alkynylanilines [20][22] catalytic syntheses of indoles from alkynes have become
  • to directly employ these standard conditions to the sequence of ortho-haloanilines 1, terminal alkynes 2, N-iodosuccinimide (3), and alkyl halides 4 to screen the scope of the one-pot synthesis of trisubstituted 3-iodoindoles 5 in a consecutive four-component fashion (Scheme 2). The sequence
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • terminal alkynes at room temperature (Scheme 15a) [67]. The ability to tune the reactivity of the trityl ion rationally improves the approach with excellent regio- and diastereoselectivity for the unsymmetric ethers. In 2018, Ye et al. reported a CDC reaction to form C(sp)–C(sp3) coupling products from
  • to afford internal alkynes from substrates with the C(sp3)–H bond mainly located in the α-position to N, O, or S atoms. This method provides a direct and atom-economical alternative for the construction of structurally complex alkyne compounds (Scheme 26) [87]. In addition to iron, various other
  •  27) [88]. This route provides an environmentally friendly and practical approach to alkyl-substituted alkynes. Co-catalyzed reactions In recent years, cobalt has exhibited great application potential as a cross-dehydrogenation coupling catalyst due to its low price, environmentally friendliness, and
PDF
Album
Review
Published 06 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • pathways, respectively (Figure 20A). Both protocols were able to successfully engage perfluoroalkyl iodides and bromotrichloromethane in combination with a diverse scope of alkenes and alkynes (Figure 20B). Products of terminal alkenes and alkynes were generally obtained in good to excellent yields while
PDF
Album
Review
Published 28 Jul 2023

The unique reactivity of 5,6-unsubstituted 1,4-dihydropyridine in the Huisgen 1,4-diploar cycloaddition and formal [2 + 2] cycloaddition

  • Xiu-Yu Chen,
  • Hui Zheng,
  • Ying Han,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2023, 19, 982–990, doi:10.3762/bjoc.19.73

Graphical Abstract
  • ]. The well-known Huisgen 1,4-dipoles have a special kind of zwitterionic intermediates and are usually prepared by a nucleophilic addition of pyridine, quinoline, isoquinoline and other aza-arenes to electron-deficient alkynes [4][5][6][7][8]. The reactive Huisgen 1,4-dipoles have been widely employed
  • unprecedented synthetic reactivity of the electron-deficient alkynes, but also provides efficient synthetic methodologies for complex nitrogen-containing heterocycles. The potential application of this reaction in organic synthesis and medicinal chemistry might be significant. Experimental General procedure for
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • Heck cross-coupling [69][70]. However, researchers have developed various methods for the transition-metal-catalyzed C(sp2)–H olefination using various types of alkenes as coupling partners [71][72][73]. This part of the review covers reports for the alkenylation of pyridine with terminal alkynes
  • , acrylates, allenes, and alkynes as coupling partners achieving the functionalized C(sp2)–H-olefinated pyridine frameworks via metal catalysis. ortho-C–H Alkenylation In 2012, Huang and co-workers [74] disclosed a ligand-free oxidative cross-coupling reaction of pyridine with acrylates, acrylamides, and
  • . Except lately, in 2020, Chen and group [82] reported a Pd/Cu-catalyzed regio- and stereoselective synthesis of C2-alkenylated pyridines starting from internal alkynes 84 and pyridinium salts in a stereodivergent manner (Scheme 17a). The interesting part of this work was the switching of the alkene
PDF
Album
Review
Published 12 Jun 2023

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • -workers reported pyrrole-containing helical NGs 19 and 20. The precursors 17 and 18 were synthesized from pyrrole-containing alkynes and tetracyclone 2 through a typical Diels–Alder reaction. The pair of enantiomers of these aza-[5]helicenes was confirmed by the X-ray crystal structure of racemic
PDF
Album
Review
Published 30 May 2023

Synthesis, structure, and properties of switchable cross-conjugated 1,4-diaryl-1,3-butadiynes based on 1,8-bis(dimethylamino)naphthalene

  • Semyon V. Tsybulin,
  • Ekaterina A. Filatova,
  • Alexander F. Pozharskii,
  • Valery A. Ozeryanskii and
  • Anna V. Gulevskaya

Beilstein J. Org. Chem. 2023, 19, 674–686, doi:10.3762/bjoc.19.49

Graphical Abstract
  • compounds 7a–e in 42–62% yields, but also gave higher amounts of products 9a–e (10–30%). Thus, the Pd- and phosphine-free Castro–Stephens coupling was a good enough alternative to synthesize alkynes 7. The structure of the double alkynylation product 9e was confirmed by X-ray diffraction data (see
  • recrystallization of the crude product from ethanol. Next, the oxidative dimerization of terminal alkynes 6a–e was carried out in an aerobic medium in the CuI/TMEDA/iPr2NH system at room temperature, which proved to be effective in the synthesis of butadiynes 1–4 [15] (Scheme 3). The desired diarylbutadiynes 5a–e
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • -alkynylketones 129 in good yields. Conjugate additions with organozirconium reagents The hydrozirconation of alkenes and alkynes generates mild organozirconium compounds that can be used in various transformations. Fletcher and co-workers developed the utilization of organozirconium reagents in Cu-catalyzed
  • derivatization is possible through the oxidation of the silyl motif to alcohol or the dehydration of the aldol adduct. Other tandem conjugate addition/enolate-trapping reactions In 2016, Nishiyama and co-workers have studied a three-component coupling reaction of alkynes, enones, and aldehydes via direct
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • difunctionalization of norbornene derivatives 15 with alkynes (Scheme 3) [35]. It was noted the reaction is amenable to both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs); however, yields were diminished with increasing electron deficiency. Moreover, the use of the bulkier tert
  • product 19c, the latter was obtained in a greatly reduced yield, perhaps due to less ring strain providing a thermodynamic driving force. In 2013, Mannathan et al. discussed a Ni-catalyzed intermolecular three-component difunctionalization of oxabicyclic alkenes 1 with organoboronic acids 20 and alkynes
  • exo face of 30b, oxidative cyclization can afford the ruthenacycle 101. Unlike previous works studying Ru-catalyzed cyclizations involving bicyclic alkenes and alkynes [56][57][58][59], the reaction preferentially undergoes β-hydride elimination to generate 102 rather than reductive elimination which
PDF
Album
Review
Published 24 Apr 2023

Mechanochemical solid state synthesis of copper(I)/NHC complexes with K3PO4

  • Ina Remy-Speckmann,
  • Birte M. Zimmermann,
  • Mahadeb Gorai,
  • Martin Lerch and
  • Johannes F. Teichert

Beilstein J. Org. Chem. 2023, 19, 440–447, doi:10.3762/bjoc.19.34

Graphical Abstract
  • the standard reactions for catalytic hydrogenations with copper(I)/NHC complexes [4]. In this vein, we tested complex 5 from solid and liquid phase synthesis in the catalytic hydrogenation of esters, carbonyl compounds and in the semihydrogenation of alkynes. In the catalytic hydrogenation of ethyl
PDF
Album
Supp Info
Letter
Published 14 Apr 2023

CuAAC-inspired synthesis of 1,2,3-triazole-bridged porphyrin conjugates: an overview

  • Dileep Kumar Singh

Beilstein J. Org. Chem. 2023, 19, 349–379, doi:10.3762/bjoc.19.29

Graphical Abstract
  • connect a porphyrin with a chromophoric group. Among these, the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction [1][2] of azides with terminal alkynes is a popular and well established process to link a porphyrin with other moieties via 1,2,3-triazole group [3] (Figure 1). The term “click
  • triazoloporphyrins 32a–c and triazole-bridged bisporphyrins 34 in good yields. The “click reaction” of azidoporphyrin 30 with the terminal alkynes 31a–c and 33 in a THF/water (3:1) mixture was investigated by using different catalytic systems. Among these, copper carbene (SIMes)CuBr proved to be a better catalyst
  • 55 as sensitizers for dye-sensitized solar cells (DSSCs). These porphyrin conjugates were synthesized through the click reaction between azidoporphyrin 51 and alkynes 52 or 54. Further, porphyrin 57 bearing a CN and a COOH group was prepared by the treatment of porphyrin 55 with 2-cyanoacetic acid
PDF
Album
Review
Published 22 Mar 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • -catalysed hydroboration of alkynes was first reported by Periasamy using N,N-diethylaniline·BH3 as the catalyst and HBcat as the turnover reagent (terminal reductant) [48][49]. This was followed by Hoshi who used dialkylboranes, 9-borabicyclo(3.3.1)nonane (H-B-9-BBN) and dicyclohexylborane (Cy2BH) to
  • catalyse the hydroboration of alkynes with HBcat [50]. Hoshi later reported that Cy2BH [51] and in situ generated bis(pentafluorophenyl)borane, Piers’ borane [52], catalysed the hydroboration of alkynes with HBpin, to give alkenyl pinacol boronic esters. Tris(2,4,6-trifluorophenyl)borane [53], tris(3,4,5
  • -trifluorophenyl)borane [54], BH3 [55][56][57], and H-B-9-BBN [58] have also been reported as catalysts for the hydroboration of alkynes with HBpin (Scheme 2). Lloyd-Jones et al. investigated the mechanism of this reaction and found transborylation, group 13 exchange between boron atoms, enabled catalytic turnover
PDF
Album
Review
Published 21 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • favoring reactivity with various types of substrates, ranging from halides to carbonyls and alkenes/alkynes. It is comprehensible that this reagent attracted early interest in natural product synthesis and more precisely on medium-sized ring formation. 4.1 SmI2-mediated Barbier-type ring annulation towards
  • ester. Finally, this latter was hydrolyzed or reduced to respectively provide albolic acid (178) and ceroplastol II (179). The scope of the reaction was also extended to various products containing the [X-8-5] tricyclic system (Figure 6). Several functionalized terminal alkynes succeeded in the Pauson
PDF
Album
Review
Published 03 Mar 2023

Sequential hydrozirconation/Pd-catalyzed cross coupling of acyl chlorides towards conjugated (2E,4E)-dienones

  • Benedikt Kolb,
  • Daniela Silva dos Santos,
  • Sanja Krause,
  • Anna Zens and
  • Sabine Laschat

Beilstein J. Org. Chem. 2023, 19, 176–185, doi:10.3762/bjoc.19.17

Graphical Abstract
  • ]. Since the early work by Wailes, Schwartz and Buchwald on the Schwartz reagent Cp2Zr(H)Cl and its reactivity towards alkynes, alkenes, and C–X double bonds particularly hydrozirconation has gained much attention [25][26][27][28][29][30]. It has been successfully employed in methodology studies [31][32
  • Crombie’s work on dienamides and prepared dienoates 15 by hydrozirconation of terminal alkynes 16 followed by Pd-catalyzed cross coupling with enoates 17 [55][56]. A repetitive approach gave rise to oligoenoates [57]. Hydrozirconations were also combined with carbonylations to install carbonyl groups. For
  • example, the sequential hydrozirconation/carbonylation of propargylic ethers 18 reported by Donato [58] yielded α,β-unsaturated lactones 19. Beside the hydrozirconation/acylation sequence of nitriles utilizing acid chlorides published by Majoral/Floreancig [59][60], Cox revealed that terminal alkynes 16
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2023

Practical synthesis of isocoumarins via Rh(III)-catalyzed C–H activation/annulation cascade

  • Qian-Ci Gao,
  • Yi-Fei Li,
  • Jun Xuan and
  • Xiao-Qiang Hu

Beilstein J. Org. Chem. 2023, 19, 100–106, doi:10.3762/bjoc.19.10

Graphical Abstract
  • of 1,2-difunctionalized arenes with alkynes or carbon monoxide (Scheme 1b, III) [13][14][15][16], have been widely applied for the assembly of isocoumarins over the past decades. Recently, the transition-metal-catalyzed ortho C–H activation/annulation of benzoic acids has emerged as an attractive
  • approach towards isocoumarins [17][18]. Pioneering examples relying on the Pd, Ru, and Ir-catalyzed C–H cross coupling of benzoic acids with alkenes and alkynes were realized by the groups of Miura [19], Lee [20], Ackermann [21], Zhang [22], Jiang [23], and Jeganmohan [24] et al. Despite these impressive
  • easily available, which have been established as versatile synthetic building blocks for the synthesis of cyclic scaffolds [25]. In 2016, Zhu et al. reported the first example of a Rh-catalyzed C–H functionalization of enaminones with alkynes and α-diazo-β-ketoesters to access naphthalenes [26]. Very
PDF
Album
Supp Info
Letter
Published 30 Jan 2023

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • pyrrole-fused heterocyclic tricycles [33]. The involvement of Nazarov and in particular aza-Nazarov reactions in the cyclization of alkynes that go through metal carbene intermediates has recently been reviewed by Gao and co-workers [34]. In 2019, we reported a highly effective aza-Nazarov cyclization for
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

Scope of tetrazolo[1,5-a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof

  • Laura Holzhauer,
  • Chloé Liagre,
  • Olaf Fuhr,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2022, 18, 1088–1099, doi:10.3762/bjoc.18.111

Graphical Abstract
  • ) triazoloquinoxaline complexes as well as a new TIQ rhenium complex were synthesized. As a result, a small 1,2,3-triazoloquinoxaline library was obtained and the method could be expanded towards 4-substituted tetrazoloquinoxalines. The compatibility of various aliphatic and aromatic alkynes towards the reaction was
  • , a small library of 1,2,3-triazole-substituted quinoxalines was synthesized applying the method of Chattopadhyay et al. [10] with minor adjustments. Altogether, a series of 21 different aliphatic and aromatic terminal alkynes were reacted with tetrazolo[1,5-a]quinoxaline and Cu(I) triflate as a
  • the compatibility of the conversion with a diverse set of alkynes. Reduction of the starting material 11a to quinoxalin-2-amine as a side product was observed in some cases (see Supporting Information File 1 for details). The wide range of tolerated alkynes allows the installation of functional groups
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2022

Synthesis of N-phenyl- and N-thiazolyl-1H-indazoles by copper-catalyzed intramolecular N-arylation of ortho-chlorinated arylhydrazones

  • Yara Cristina Marchioro Barbosa,
  • Guilherme Caneppele Paveglio,
  • Claudio Martin Pereira de Pereira,
  • Sidnei Moura,
  • Cristiane Storck Schwalm,
  • Gleison Antonio Casagrande and
  • Lucas Pizzuti

Beilstein J. Org. Chem. 2022, 18, 1079–1087, doi:10.3762/bjoc.18.110

Graphical Abstract
  • cycloaddition reaction of α-diazomethylphosphonates with o-(trimethylsilyl)phenyl triflate in the presence of CsF [13], Cu2+-mediated N−N bond formation from ketimines in the presence of oxygen [14], Pd2+-mediated oxidative benzannulation from pyrazoles and internal alkynes [15], Pd-catalyzed Aza–Nenitzescu
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2022
Other Beilstein-Institut Open Science Activities