Search results

Search for "conjugate addition" in Full Text gives 162 result(s) in Beilstein Journal of Organic Chemistry.

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • converted to fused sultams (Scheme 30) [56]. Anand et al. reported a Cu-catalyzed one-pot method for the preparation of 1,2,3-triazole-fused tricyclic heterocycles 106 via an intramolecular [3 + 2]-annulation. This strategy includes the 1,6-conjugate addition of Me3SiN3 to o-alkynylated p-quinone methides
  • for this transformation can be assumed. First, the o-alkynylated p-quinone methide 105 undergoes a 1,6-conjugate addition with Me3SiN3 to give the intermediate 111, followed by the intramolecular Click annulation to afford the final product. A further possibility may be the creation of the 1,2,3
  • -triazole intermediate 107, followed by intramolecular 1,6-conjugate addition to afford the final product. To find the exact mechanism, the reaction was performed in CDCl3 as solvent in an NMR tube with a catalytic amount of AgSbF6 and then, the reaction mixture was analyzed using 1H NMR spectroscopy. The
PDF
Album
Review
Published 13 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • radical conjugate addition triggered by the HAT process (see Scheme 22 intermediate D) allowed the construction of complex polycyclic units containing quaternary carbon centers. In the first case, a cascade radical addition/conjugate addition promoted by a HAT process to the terminal olefin of 53 (Scheme
  • stereogenic centers were constructed by this cascade reaction. As exemplified above (Scheme 23), the hypothesized enolate intermediate produced in the radical conjugate addition promoted by a MHAT process could be engaged in sequential reactions, offering a range of possibilities for the design of new
  • ). The most likely mechanism starts with a 6-exo-trig cyclization step via radical conjugate addition triggered by a MHAT process that results in the formation of a stabilized tertiary radical B (Scheme 31). The cyclization between the radical B and the aromatic ring then leads to the stabilized radical
PDF
Album
Review
Published 07 Jul 2021

Breaking paracyclophane: the unexpected formation of non-symmetric disubstituted nitro[2.2]metaparacyclophanes

  • Suraj Patel,
  • Tyson N. Dais,
  • Paul G. Plieger and
  • Gareth J. Rowlands

Beilstein J. Org. Chem. 2021, 17, 1518–1526, doi:10.3762/bjoc.17.109

Graphical Abstract
  • is formed than we isolate. The compound can react further. Simply treating it with silica and methanol during filtration leads to the conjugate addition of methanol to the doubly activated alkene to give a cyclohexenone cyclophane 14 (Scheme 3). Attempting to force this reaction with acid leads to a
  • mixture of starting material 6, the conjugate addition product 14, and a trace of the denitration product 15. The structure of both compounds was confirmed by single X-ray crystallography (Figure 4 and Figure 5). The addition of methanol is stereoselective with only a single diastereomer of 14 being
  • than three repeats quoted). Possible mechanism for the formation of [2.2]metaparacyclophane 5 and cyclohexadienone cyclophane 6 from [2.2]paracyclophane 1. Conjugate addition of methanol and subsequent elimination. Supporting Information Supporting Information File 208: Metaparacyclophane spectra
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

Organocatalytic asymmetric Michael/acyl transfer reaction between α-nitroketones and 4-arylidenepyrrolidine-2,3-diones

  • Chandrakanta Parida and
  • Subhas Chandra Pan

Beilstein J. Org. Chem. 2021, 17, 1447–1452, doi:10.3762/bjoc.17.100

Graphical Abstract
  • development of catalytic asymmetric conjugate addition reactions [3][4][5]. In particular, the conjugate addition of nitroalkanes and their derivatives to enones has drawn the attention of organic chemists as the corresponding products can be chemoselectively converted to a variety of useful structures [6
  • -nitroketones have been found to be a popular nucleophilic acyl transfer reagent. In 2011, three research groups namely Wang, Yan and Kwong independently revealed the organocatalytic asymmetric conjugate addition of α-nitroketones to β,γ-unsaturated α-keto esters with the concomitant acyl transfer reaction to
  • presence of the quinine-derived bifunctional squaramide catalyst I in dichloromethane at room temperature (Table 1). Delightfully, after stirring for 12 hours, a product was isolated in 70% yield that was characterized as compound 3a and was supposed to be formed through conjugate addition followed by
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
PDF
Album
Review
Published 12 May 2021

Recent advances in palladium-catalysed asymmetric 1,4–additions of arylboronic acids to conjugated enones and chromones

  • Jan Bartáček,
  • Jan Svoboda,
  • Martin Kocúrik,
  • Jaroslav Pochobradský,
  • Alexander Čegan,
  • Miloš Sedlák and
  • Jiří Váňa

Beilstein J. Org. Chem. 2021, 17, 1048–1085, doi:10.3762/bjoc.17.84

Graphical Abstract
  • first heterogeneous polystyrene-supported recyclable catalyst for asymmetric conjugate addition reactions of arylboronic acids to five and six-membered enones. In our laboratory, we also attempted to perform this reaction under flow conditions. However, the change from batch to flow arrangement itself
PDF
Album
Review
Published 10 May 2021

Facile preparation and conversion of 4,4,4-trifluorobut-2-yn-1-ones to aromatic and heteroaromatic compounds

  • Takashi Yamazaki,
  • Yoh Nakajima,
  • Minato Iida and
  • Tomoko Kawasaki-Takasuka

Beilstein J. Org. Chem. 2021, 17, 132–138, doi:10.3762/bjoc.17.14

Graphical Abstract
  • Sandford group clarified the high potency of these compounds for the conjugate addition of N- as well as O-nucleophiles [21]. On the basis of such an idea, we tried two routes to gain access to 1) 4-substituted 6-(trifluoromethyl)salicylate derivatives (C-nucleophiles) and 2) 6-substituted 4
  • (that is, one of the two methyl groups in acetylacetone was formally substituted for an isopropyl or a t-Bu moiety, respectively), but no reaction was observed at all. The conjugate addition of amines to this type of ynone has already been reported [21], where the authors pointed out the significant
  • cyclization/aromatization reactions allowed us to explore a brief scope and limitation of the present reaction by using four representative types of crude ynones 2 starting from the conjugate addition step either with acetylacetone or ethyl acetoacetate (Table 4). In all instances, the desired products 4 were
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2021

Using multiple self-sorting for switching functions in discrete multicomponent systems

  • Amit Ghosh and
  • Michael Schmittel

Beilstein J. Org. Chem. 2020, 16, 2831–2853, doi:10.3762/bjoc.16.233

Graphical Abstract
  • three self-sorting events (three-state switching). Finally, the consequences of forward and backward walking of the biped ligand 29 were studied in the presence of two equiv of N-methylpyrrolidine (75). The latter should be able to catalyze the conjugate addition of thiophenol (44) to 2-cyclopentenone
PDF
Album
Review
Published 20 Nov 2020

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • hydrolysis provides the radical conjugate addition (RCA) products 55 with a quaternary stereocentre in excellent yields and enantioselectivities (21 examples, up to 99:1 er). The quantum yield was measured to be <1 (Φ = 0.4) for the iridium-catalysed reaction, suggesting that a radical chain process is not
PDF
Album
Review
Published 29 Sep 2020

Reactions of 3-aryl-1-(trifluoromethyl)prop-2-yn-1-iminium salts with 1,3-dienes and styrenes

  • Thomas Schneider,
  • Michael Keim,
  • Bianca Seitz and
  • Gerhard Maas

Beilstein J. Org. Chem. 2020, 16, 2064–2072, doi:10.3762/bjoc.16.173

Graphical Abstract
  • NOESY NMR experiments and confirmed by an X-ray structure determination (see Figure 3). A mechanistic scheme for the formation of indenes 12 and benzo[a]fluorenes 13 is proposed in Scheme 5. The electrophilic propyn-1-iminium ion 1a adds chemoselectively (by conjugate addition) and regioselectively
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2020

Pauson–Khand reaction of fluorinated compounds

  • Jorge Escorihuela,
  • Daniel M. Sedgwick,
  • Alberto Llobat,
  • Mercedes Medio-Simón,
  • Pablo Barrio and
  • Santos Fustero

Beilstein J. Org. Chem. 2020, 16, 1662–1682, doi:10.3762/bjoc.16.138

Graphical Abstract
  • this sense, while the addition of hard organometallic nucleophiles, such as lithium dialkylcuprates or Grignard reagents, failed, softer nucleophiles such as nitroalkanes cleanly added to the β-position, providing the Michael adduct 61. Unexpectedly, the conjugate addition reaction resulted in
  • in wet nitromethane under reflux, clean conjugate addition/detrifluoromethylation was observed, in this case followed by retro-Michael reaction of nitromethane achieving enones 65 in moderate to good yields (Scheme 37). Interestingly, the overall reaction sequence results in the formal inversion of
PDF
Album
Review
Published 14 Jul 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • ), in the presence of the sacrificial electron donor DIPEA, can reduce these species under green light irradiation. The ensuing decarboxylation provides a C(sp3) radical, which undergoes a radical conjugate addition with a suitable Michael acceptor 4.2, providing the desired alkylation products 4.3. A
PDF
Album
Review
Published 29 May 2020

Copper-catalysed alkylation of heterocyclic acceptors with organometallic reagents

  • Yafei Guo and
  • Syuzanna R. Harutyunyan

Beilstein J. Org. Chem. 2020, 16, 1006–1021, doi:10.3762/bjoc.16.90

Graphical Abstract
  • chiral natural products and bioactive molecules. Hence, this review focuses on the progress made over the past 20 years for heterocyclic acceptors. Keywords: conjugate addition; copper catalysis; heterocyclic Michael acceptor; organometallics; Introduction The copper-catalysed asymmetric addition of
  • enantioselective methods for the synthesis of these compounds resulting in high yield and enantioselectivity has proven challenging. As a result, significant effort has been invested into copper-catalysed asymmetric conjugate addition reactions using organometallics. In 2005, Feringa and co-workers reported on the
  • copper-catalysed asymmetric conjugate addition (ACA) of dialkylzinc reagents to N-substituted 2,3-dehydro-4-piperidones 1 in order to access useful chiral piperidine derivatives (Scheme 1A) [15]. They found the catalytic system based on the chiral phosphoramidite L1 and a copper salt to be the most
PDF
Album
Review
Published 14 May 2020

Copper-catalyzed enantioselective conjugate addition of organometallic reagents to challenging Michael acceptors

  • Delphine Pichon,
  • Jennifer Morvan,
  • Christophe Crévisy and
  • Marc Mauduit

Beilstein J. Org. Chem. 2020, 16, 212–232, doi:10.3762/bjoc.16.24

Graphical Abstract
  • Delphine Pichon Jennifer Morvan Christophe Crevisy Marc Mauduit Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France 10.3762/bjoc.16.24 Abstract The copper-catalyzed enantioselective conjugate addition (ECA) of organometallic
  • -deficient functions (i.e., aldehydes, thioesters, acylimidazoles, N-acyloxazolidinones, N-acylpyrrolidinones, amides, N-acylpyrroles) were recently investigated. Remarkably, only a few chiral copper-based catalytic systems have successfully achieved the conjugate addition of different organometallic
  • accomplished in this stimulating field. Keywords: acylimidazole; N-acyloxazolidinone; N-acylpyrrole; N-acylpyrrolidinone; aldehyde; amide; copper catalysis; electron-deficient alkenes; enantioselective conjugate addition; Michael acceptor; thioester; Introduction Generating high molecular complexity and
PDF
Album
Review
Published 17 Feb 2020

Rapid, two-pot procedure for the synthesis of dihydropyridinones; total synthesis of aza-goniothalamin

  • Thomas J. Cogswell,
  • Craig S. Donald and
  • Rodolfo Marquez

Beilstein J. Org. Chem. 2020, 16, 135–139, doi:10.3762/bjoc.16.15

Graphical Abstract
  • described above. Rewardingly, Hosomi–Sakurai allylation of the conjugated imine intermediate proceeded to afford the desired diene 10 in working yield (35%). The formation of diene 10 is significant as the corresponding α,β-enones and α,β-enals undergo exclusive conjugate addition under Hosomi–Sakurai
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2020

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
PDF
Album
Review
Published 13 Nov 2019

1,5-Phosphonium betaines from N-triflylpropiolamides, triphenylphosphane, and active methylene compounds

  • Vito A. Fiore,
  • Chiara Freisler and
  • Gerhard Maas

Beilstein J. Org. Chem. 2019, 15, 2603–2611, doi:10.3762/bjoc.15.253

Graphical Abstract
  • reactions. We propose two mechanistic pathways for the synthesis of betaines 3 from N-triflylpropiolamides 1 (Scheme 6). Both of them begin with the conjugate addition of PPh3 at the C–C-triple bond, leading to the vinyl anion intermediate 5. On pathway A, 5 is protonated by the active methylene compound to
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2019

Synthesis of pyrrolo[1,2-a]quinolines by formal 1,3-dipolar cycloaddition reactions of quinolinium salts

  • Anthony Choi,
  • Rebecca M. Morley and
  • Iain Coldham

Beilstein J. Org. Chem. 2019, 15, 1480–1484, doi:10.3762/bjoc.15.149

Graphical Abstract
  • with triethylamine promoted the reaction of the resulting quinolinium ylides (formally azomethine ylides) with electron-poor alkenes by conjugate addition followed by cyclization or by [3 + 2] dipolar cycloaddition. The pyrroloquinoline products were formed as single regio- and stereoisomers. These
  • with electron-poor alkenes occurs through a stepwise conjugate addition–cyclization process [23]. We were interested in the related quinolinium ylides that, on (formal) cycloaddition would provide pyrrolo[1,2-a]quinolines as products. These are tricyclic compounds consisting of a pyrrole ring fused
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2019

Synthesis of non-racemic 4-nitro-2-sulfonylbutan-1-ones via Ni(II)-catalyzed asymmetric Michael reaction of β-ketosulfones

  • Alexander N. Reznikov,
  • Anastasiya E. Sibiryakova,
  • Marat R. Baimuratov,
  • Eugene V. Golovin,
  • Victor B. Rybakov and
  • Yuri N. Klimochkin

Beilstein J. Org. Chem. 2019, 15, 1289–1297, doi:10.3762/bjoc.15.127

Graphical Abstract
  • reaction with their participation. Asymmetric conjugate addition of activated methylene compounds (such as diketones, keto esters and malonates) to nitroalkenes in the presence of Mg [43], Co [44][45], Mn [45] and Ru [46] complexes was performed. The most remarkable results were obtained with Ni(II
  • coordination to Ni. The complex B regenerates after the conjugate addition via transition state C and coordination of a new β-ketosulfone molecule to Ni. TS1 and TS2 are proposed by analogy with 1,3-dicarbonyl compounds [47] to rationalize the asymmetric induction. As illustrated in Scheme 2, β-ketosulfone is
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

Ugi reaction-derived prolyl peptide catalysts grafted on the renewable polymer polyfurfuryl alcohol for applications in heterogeneous enamine catalysis

  • Alexander F. de la Torre,
  • Gabriel S. Scatena,
  • Oscar Valdés,
  • Daniel G. Rivera and
  • Márcio W. Paixão

Beilstein J. Org. Chem. 2019, 15, 1210–1216, doi:10.3762/bjoc.15.118

Graphical Abstract
  • employ a three-component, diastereoselective variant of the Ugi reaction for the synthesis of a prolyl pseudo-peptide catalyst, which proved effective in an organocatalytic conjugate addition reaction [6]. Later, our groups developed an Ugi reaction-based multicomponent approach enabling the structure
  • the peptide moieties into the PFA matrix, while proving the good stability of the PFA-supported catalysts under classic working temperatures (i.e., up to 100 °C). To assess the catalytic performance of the PFA-supported catalysts, the model system consisting in organocatalytic conjugate addition of n
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2019

Switchable selectivity in Pd-catalyzed [3 + 2] annulations of γ-oxy-2-cycloalkenones with 3-oxoglutarates: C–C/C–C vs C–C/O–C bond formation

  • Yang Liu,
  • Julie Oble and
  • Giovanni Poli

Beilstein J. Org. Chem. 2019, 15, 1107–1115, doi:10.3762/bjoc.15.107

Graphical Abstract
  • reversibility of the O-1,4-addition step, in combination with the irreversible C-1,4-addition/decarboxylation path, the intramolecular conjugate addition step could be diverted from the kinetic (O-alkylation) to the thermodynamic path (C-alkylation) thanks to a simple temperature increase. Crucial for the
  • ]nonane-3,8-dione (5a) with 50% and 69% yield, respectively (Table 1, entries 8 and 9). This product plausibly arises from a C-allylation step followed by an intramolecular C-conjugate addition/decarboxylation sequence, although throughout this study the putative intermediate 3a proved always elusive
  • d). Pd(0) decoordination closes the catalytic cycle delivering intermediate E(keto) (step e) (Scheme 7). The following spontaneous intramolecular O-conjugate addition of one of the two possible enol tautomers of E(keto) affords the kinetic C–C/O–C adduct 4a through steps (f, g), or (h, i, j) (Scheme
PDF
Album
Supp Info
Full Research Paper
Published 16 May 2019

Multicomponent reactions (MCRs): a useful access to the synthesis of benzo-fused γ-lactams

  • Edorta Martínez de Marigorta,
  • Jesús M. de Los Santos,
  • Ana M. Ochoa de Retana,
  • Javier Vicario and
  • Francisco Palacios

Beilstein J. Org. Chem. 2019, 15, 1065–1085, doi:10.3762/bjoc.15.104

Graphical Abstract
  • conjugate addition of benzamide nitrogen onto the 2-ynamide generates the final cyclization product 24 through allene intermediate 28. Taking into account that the reaction does not take place with internal alkynes, the authors conclude that a terminal alkyne is necessary for the formation of the first
PDF
Album
Review
Published 08 May 2019

Synthesis of nonracemic hydroxyglutamic acids

  • Dorota G. Piotrowska,
  • Iwona E. Głowacka,
  • Andrzej E. Wróblewski and
  • Liwia Lubowiecka

Beilstein J. Org. Chem. 2019, 15, 236–255, doi:10.3762/bjoc.15.22

Graphical Abstract
  • pyrrolidine-2-one (3S,4S,5R)-123 [111]. Oxidation of the hydroxymethyl group and acid hydrolysis gave (2S,3S,4S)-4 [112]. By enantioselective conjugate addition and asymmetric dihydroxylation An orthogonally protected 3,4-dihydroxy-L-glutamic acid was envisioned as an intermediate in the projected synthesis
  • O-benzyl-L-serine. Reagents and conditions: a) (CF3CH2O)2P(O)CH2COOMe, KHMDS, 18-crown-6; b) I2, MeCN; c) Bu3SnH, AIBN, benzene, reflux; d) H2, 10% Pd/C, ethanol; e) CrO3, acetone, then CH2N2, ether; f) 3 M HCl, 80 °C. Synthesis of (2S,3R)-2 employing a one-pot cis-olefination–conjugate addition
  • ; j) 6 M HCl, 80 °C. Synthesis of (2S,3S,4R)-127 by enantioselective conjugate addition and asymmetric dihydroxylation. Reagents and conditions: a) ethyl 1-phenylselenylacrylate, chiral PTC, 50% KOH, CH2Cl2; b) 1 M HCl, THF; c) 9-bromo-9-phenylfluorene, K2PO4, PbNO2, MeCN; d) NaIO4, NaHCO3, MeOH/H2O
PDF
Album
Review
Published 25 Jan 2019

Synthesis and biological evaluation of 1,2-disubstituted 4-quinolone analogues of Pseudonocardia sp. natural products

  • Stephen M. Geddis,
  • Teodora Coroama,
  • Suzanne Forrest,
  • James T. Hodgkinson,
  • Martin Welch and
  • David R. Spring

Beilstein J. Org. Chem. 2018, 14, 2680–2688, doi:10.3762/bjoc.14.245

Graphical Abstract
  • natural products. The chemistry developed towards the allylic alcohols 5 and 6, outlined in Scheme 1, seemed ideal to this end. A range of alkynes 10 could undergo Sonogashira coupling with the commercially available acid chloride 9. The resultant ynones 11 could then undergo conjugate addition with
  • resulted for 11b, which was attributed to difficulties in obtaining its precursor 10b with high purity which stemmed from its volatility. These ynones were then subjected to a conjugate addition with an assortment of primary amines 12a–f (Scheme 3). The reactions proceeded with excellent yield in all cases
  • -quinolone Pseudonocardia sp. natural products, which encompassed variation of both the side chain and N-substituent. This represented an extension of the chemistry which we employed towards the natural products, utilising sequential Sonogashira coupling, high-yielding conjugate addition, and metal-catalysed
PDF
Album
Supp Info
Letter
Published 19 Oct 2018
Other Beilstein-Institut Open Science Activities