Search results

Search for "epoxidation" in Full Text gives 168 result(s) in Beilstein Journal of Organic Chemistry.

Recent synthesis of thietanes

  • Jiaxi Xu

Beilstein J. Org. Chem. 2020, 16, 1357–1410, doi:10.3762/bjoc.16.116

Graphical Abstract
PDF
Album
Review
Published 22 Jun 2020

Synthesis of 3-substituted isoxazolidin-4-ols using hydroboration–oxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles

  • Lívia Dikošová,
  • Júlia Laceková,
  • Ondrej Záborský and
  • Róbert Fischer

Beilstein J. Org. Chem. 2020, 16, 1313–1319, doi:10.3762/bjoc.16.112

Graphical Abstract
  • isoxazolidines by means of dihydroxylation [9][10] and epoxidation [11][12] reactions. Regarding the stereochemistry, almost all of the realized additions proceed with an excellent trans stereoselectivity relative to the substituent at C-3, giving isoxazolidine-4,5-diols and isoxazolidinyl epoxides with a C-3/4
  • stereochemical results are consistent with our previous findings on the direct dihydroxylation and epoxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles [9][10][11][12]. To invert the relative C-3/4-trans stereochemistry, the isoxazolidin-4-ols 5a–c were first oxidized to the corresponding ketones
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2020

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • epoxidation agent of an electron-deficient olefin intermediate, which was formed by deaminative Mannich coupling between the imine and nucleophiles such as malononitrile and methyl cyanoacetate (Scheme 64) [109]. Overall, a variety of additional examples of porphyrin-photocatalyzed heteroatom oxidations are
PDF
Album
Review
Published 06 May 2020

Combining enyne metathesis with long-established organic transformations: a powerful strategy for the sustainable synthesis of bioactive molecules

  • Valerian Dragutan,
  • Ileana Dragutan,
  • Albert Demonceau and
  • Lionel Delaude

Beilstein J. Org. Chem. 2020, 16, 738–755, doi:10.3762/bjoc.16.68

Graphical Abstract
  • subsequent Eu(fod)3-catalyzed intermolecular Diels–Alder cycloaddition and epoxidation reactions (Scheme 5) [69]. In this stereoselective synthesis, the last biomimetic step was critical to obtain the proper enantiomer of the tetracyclic core of nanolobatolide. Amphidinolide macrolides Amphidinolides
  • of the dienic compound through a Suzuki–Miyaura coupling and Julia–Kocienski olefination, followed by a Yamaguchi lactonization, and an asymmetric epoxidation in the presence of (+)-diethyl tartrate, conveniently produced (−)-amphidinolide K (4, Scheme 7). In a remarkable work, Trost et al. [72
  • , an intramolecular Ru-catalyzed alkene-alkyne (Ru-AA) coupling and a late-stage epoxidation were readily accomplished, while the installation of the α,α′-dihydroxy ketone through a dihydroxylation proved difficult. Noteworthy, the structural elucidation of the THP ring of des-epoxy-amphidinolide N
PDF
Album
Review
Published 16 Apr 2020

Synthesis of disparlure and monachalure enantiomers from 2,3-butanediacetals

  • Adam Drop,
  • Hubert Wojtasek and
  • Bożena Frąckowiak-Wojtasek

Beilstein J. Org. Chem. 2020, 16, 616–620, doi:10.3762/bjoc.16.57

Graphical Abstract
  • enantioselective reactions, such as the Sharpless epoxidation [19][20][21][22][23][24], asymmetric dihydroxylation [25][26], chloroallyloboronation [27], or iodolactonization [28]. Most recently a method using the asymmetric chlorination of dodecanal by LiCl in the presence of a chiral imidazolidinone catalyst has
  • also been described [29]. However, many of these methods have some drawbacks – the most important one being the insufficient enantiomeric purity for biological and commercial applications [29]. (+)-Disparlure used in most commercial lures is prepared by the Sharpless epoxidation reaction, which gives
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Combination of multicomponent KA2 and Pauson–Khand reactions: short synthesis of spirocyclic pyrrolocyclopentenones

  • Riccardo Innocenti,
  • Elena Lenci,
  • Gloria Menchi and
  • Andrea Trabocchi

Beilstein J. Org. Chem. 2020, 16, 200–211, doi:10.3762/bjoc.16.23

Graphical Abstract
  • reduced gauche interactions [55]. Subsequent epoxidation at the double bond directed by the hydroxy group and using m-chloroperbenzoic acid allowed to install two additional stereocenters with complete control of the relative stereochemistry in 68% yield. Such two-step synthesis proved to proceed also in
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Construction of trisubstituted chromone skeletons carrying electron-withdrawing groups via PhIO-mediated dehydrogenation and its application to the synthesis of frutinone A

  • Qiao Li,
  • Chen Zhuang,
  • Donghua Wang,
  • Wei Zhang,
  • Rongxuan Jia,
  • Fengxia Sun,
  • Yilin Zhang and
  • Yunfei Du

Beilstein J. Org. Chem. 2019, 15, 2958–2965, doi:10.3762/bjoc.15.291

Graphical Abstract
  • reagents have emerged as a class of efficient and environmentally benign nonmetal “green” oxidants [66][67][68][69][70][71][72][73]. For instance, iodosobenzene (PhIO) [74] has been widely used in many synthetic transformations. It was found that PhIO is efficient in realizing epoxidation of olefins [75
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering

  • Eric J. N. Helfrich,
  • Geng-Min Lin,
  • Christopher A. Voigt and
  • Jon Clardy

Beilstein J. Org. Chem. 2019, 15, 2889–2906, doi:10.3762/bjoc.15.283

Graphical Abstract
  • further oxidation to carbonyls or carboxylates. Other reactions, such as epoxidation, ether bond formation, and structural rearrangement have also been reported (Figure 7). CYP114 in gibberellin (5) biosynthesis, for example, catalyzes the unique oxidation/six-membered to five-membered ring contraction of
  • crystal structures, homology models, or mechanistic information to select the residues to be mutated. For example, P450BM3 (CYP102A1) was rationally evolved to catalyze the epoxidation of amorphadiene (21) by expanding the active site, minimizing competing reactions, and facilitating substrate access
  • -isozizaene (33) synthase mutants that produce different sesquiterpene skeletons. Substrate promiscuity and engineering of CYPs. a) Selected examples from using a CYP library to oxidize various monoterpenes. b) Rational engineering of P450BM3 for epoxidation of amorphadiene (21). F87A/A328L and R47L/Y51F
PDF
Album
Supp Info
Review
Published 29 Nov 2019

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • towards asymmetric electroepoxidation of olefins 71 in a biphasic CH2Cl2/aqueous NaCl system (Scheme 28). The constant current epoxidation of 71 in an undivided cell resulted in chiral epoxides 73 in good yields and moderate enantioselectivities [66]. In 2008, Onomura and co-workers described the
  • their review article [72]. In this section, we will be presenting a concise description of the use of organocatalysts as chiral inductors in electroorganic synthesis. In 2008, Page, Marken and their group reported a method for electricity-driven asymmetric organocatalytic epoxidation. The percarbonate
  • obtained via oxidation by electrogenerated CO42− [73]. Moreover, they showed that electrogenerated persulfate generated in situ via a similar anodic oxidation of H2SO4 could act as an even better oxidant in presence of catalyst 103 to achieve the epoxidation of 71'c with higher ee values (Scheme 36). In
PDF
Album
Review
Published 13 Nov 2019

Current understanding and biotechnological application of the bacterial diterpene synthase CotB2

  • Ronja Driller,
  • Daniel Garbe,
  • Norbert Mehlmer,
  • Monika Fuchs,
  • Keren Raz,
  • Dan Thomas Major,
  • Thomas Brück and
  • Bernhard Loll

Beilstein J. Org. Chem. 2019, 15, 2355–2368, doi:10.3762/bjoc.15.228

Graphical Abstract
  • include epoxidation resulting in 3,4-epoxy-7,18-dolabelladien-14-one (13) or hydroboration of 3,7,18-dolabellatriene (12, Scheme 1) that has been previously biotechnologically manufactured using CotB2W288G [103]. Another successful example is the oxidative transformation of cattleyene and phomopsen [104
PDF
Album
Review
Published 02 Oct 2019

A review of the total syntheses of triptolide

  • Xiang Zhang,
  • Zaozao Xiao and
  • Hongtao Xu

Beilstein J. Org. Chem. 2019, 15, 1984–1995, doi:10.3762/bjoc.15.194

Graphical Abstract
  • isomer 43. Treatment of 43 with methoxide ions in methanol at room temperature for 15 min gave the desired C-5 trans-butenolide 8 (40%) along with its C-5 cis-epimer 44 (60%), which is the sole product from the base-catalyzed isomerization of 43. Epoxidation of 43 gave a C-4,5-epoxide intermediate, which
  • the desired stereochemistry of the C-7 benzylic hydroxy group. Compound 46 was converted to triptonide 2 by Alder periodate reaction (NaIO4, 74%), and a sequencing m-CPBA epoxidation and basic hydrogen peroxide oxidation (H2O2/OH−) procedure (two steps, 28%). Finally, sodium borohydride reduction of 2
  • new methodologies of butenolide formation. The first butenolide formation started with the reaction of ketone 68 with carbon disulfide (CS2) and iodomethane (MeI) to give the ketene dithioacetal intermediate 69, which was subjected to a Corey–Chaykovsky epoxidation, followed by acid hydrolysis to give
PDF
Album
Review
Published 22 Aug 2019

N-(1-Phenylethyl)aziridine-2-carboxylate esters in the synthesis of biologically relevant compounds

  • Iwona E. Głowacka,
  • Aleksandra Trocha,
  • Andrzej E. Wróblewski and
  • Dorota G. Piotrowska

Beilstein J. Org. Chem. 2019, 15, 1722–1757, doi:10.3762/bjoc.15.168

Graphical Abstract
  • acids and their cyclic forms (pyrrolidin-2-ones) takes advantage of the stereoselective epoxidation of the aziridine acrylaldehyde 161 to predominantly (98:2) form the aziridine epoxide 162 when (S)-[diphenyl(trimethylsilyloxy)methyl]pyrrolidine was used as a catalyst (Scheme 42) [94]. A key β
PDF
Album
Review
Published 23 Jul 2019

Stereochemical investigations on the biosynthesis of achiral (Z)-γ-bisabolene in Cryptosporangium arvum

  • Jan Rinkel and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2019, 15, 789–794, doi:10.3762/bjoc.15.75

Graphical Abstract
  • cyclisation mechanism [27]. The absolute configuration of the intermediates nerolidyl diphosphate and the bisabolyl cation To address this question experimentally, (R)- and (S)-NPP were synthesised following a known route for enantioselective preparation of nerolidol [28] by Sharpless epoxidation of farnesol
PDF
Album
Supp Info
Letter
Published 27 Mar 2019

Synthesis of polydicyclopentadiene using the Cp2TiCl2/Et2AlCl catalytic system and thin-layer oxidation of the polymer in air

  • Zhargolma B. Bazarova,
  • Ludmila S. Soroka,
  • Alex A. Lyapkov,
  • Мekhman S. Yusubov and
  • Francis Verpoort

Beilstein J. Org. Chem. 2019, 15, 733–745, doi:10.3762/bjoc.15.69

Graphical Abstract
  • located on the surface of the polymer are capable of various addition reactions (bromination, epoxidation, oxidation) forming films of several tens or hundreds of nanometers thick on the surface. However, no further penetration of reactants into the deeper polydicyclopentadiene layers occurs [28]. It is
PDF
Album
Full Research Paper
Published 20 Mar 2019

Synthesis of nonracemic hydroxyglutamic acids

  • Dorota G. Piotrowska,
  • Iwona E. Głowacka,
  • Andrzej E. Wróblewski and
  • Liwia Lubowiecka

Beilstein J. Org. Chem. 2019, 15, 236–255, doi:10.3762/bjoc.15.22

Graphical Abstract
  • (Scheme 11) [60]. Sharpless epoxidation of the allylic alcohol 48 gave a 46:11:33 mixture of (S)-48, (3R,4S)-49 and (2R,3R)-50. While (S)-48 is a product of kinetic resolution, the formation of (2R,3R)-50 results from the intramolecular opening of the oxirane ring in (3R,4S)-49. After chromatographic
  • a protected serinal (R)-23 [54]. Wittig olefination extended the alkyl chain by two carbon atoms and simultaneously installed the C=C bond which was subjected to the intramolecular epoxidation to give a >20:1 mixture of aminoepoxides with the isomer (2S,3R,4R)-117 dominating. Without isolation this
  • (2S,3R)-2 via Sharpless epoxidation. Reagents and conditions: a) TBHP, D-(−)-DIPT, Ti(OiPr)4, MS, CH2Cl2; b) t-BuMe2SiCl, imidazole, DMAP, DMF; c) NaIO4, RuO2, AcOEt/H2O. Synthesis of (2S,3S)-2 from the imide 51. Reagents and conditions: a) NaBH4, MeOH/CH2Cl2; b) Ac2O, pyridinium perchlorate; c) furan
PDF
Album
Review
Published 25 Jan 2019

Olefin metathesis in multiblock copolymer synthesis

  • Maria L. Gringolts,
  • Yulia I. Denisova,
  • Eugene Sh. Finkelshtein and
  • Yaroslav V. Kudryavtsev

Beilstein J. Org. Chem. 2019, 15, 218–235, doi:10.3762/bjoc.15.21

Graphical Abstract
  • nearly transparent and flexible upon hydrogenation [84]. Another approach to the post-functionalization of NB–COE multiblock copolymers was implemented in reference [101] via double-bond epoxidation in the presence of m-chloroperbenzoic acid (Scheme 10B). It was found that this reaction proceeds more
  • actively in the COE copolymer blocks than in the parent PCOE homopolymer. The epoxidation, as well hydrogenation, influenced the thermal and crystalline properties of the multiblock copolymers resulting in the increase of Tg by 40–50 °С and Tm by 20–30 °C. It is quite natural that the degree of
  • of MCM between PNB and PCOE, replotted from [90]. Post-modification of multiblock copolymers by hydrogenation (A) [85] and epoxidation (B) [101] of C=C double bonds. Acknowledgements The authors are thankful to the Russian Foundation for Basic Research (project 17-03-00596). Yu. I. Denisova was
PDF
Album
Review
Published 24 Jan 2019

Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis

  • Daniel F. Sauer,
  • Johannes Schiffels,
  • Takashi Hayashi,
  • Ulrich Schwaneberg and
  • Jun Okuda

Beilstein J. Org. Chem. 2018, 14, 2861–2871, doi:10.3762/bjoc.14.265

Graphical Abstract
  • [52][53], and hydrogen evolution [54]. Further, Lewis et al. employed the NB scaffold for epoxidation of styrene and other olefins [55]. In all studies, the catalyst incorporated into the NB scaffold showed increased activity as compared to the protein-free catalyst under similar conditions
PDF
Album
Review
Published 19 Nov 2018

Synthesis and biological evaluation of 1,2-disubstituted 4-quinolone analogues of Pseudonocardia sp. natural products

  • Stephen M. Geddis,
  • Teodora Coroama,
  • Suzanne Forrest,
  • James T. Hodgkinson,
  • Martin Welch and
  • David R. Spring

Beilstein J. Org. Chem. 2018, 14, 2680–2688, doi:10.3762/bjoc.14.245

Graphical Abstract
  • replacement of the N-Me of 4 with the methylthiomethylene substituent of 7, nor epoxidation of 4’s side chain to give 8, offered any improvement in the biological activity. The result for 8 is particularly intriguing, as this natural product was noted to have the strongest effect upon the growth of H. pylori
PDF
Album
Supp Info
Letter
Published 19 Oct 2018

Synthesis of cis-hydrindan-2,4-diones bearing an all-carbon quaternary center by a Danheiser annulation

  • Gisela V. Saborit,
  • Carlos Cativiela,
  • Ana I. Jiménez,
  • Josep Bonjoch and
  • Ben Bradshaw

Beilstein J. Org. Chem. 2018, 14, 2597–2601, doi:10.3762/bjoc.14.237

Graphical Abstract
  • corresponding carbonyl group (Scheme 4) was carried out by a two-step procedure involving epoxidation of the vinylsilane 5, followed by a rearrangement of the diastereomeric mixture of epoxides 7 induced by formic acid [34][35]. The resulting ketone 8 was obtained as a 3.5:1 mixture of epimers at C3. The
PDF
Album
Supp Info
Letter
Published 09 Oct 2018

Synergistic approach to polycycles through Suzuki–Miyaura cross coupling and metathesis as key steps

  • Sambasivarao Kotha,
  • Milind Meshram and
  • Chandravathi Chakkapalli

Beilstein J. Org. Chem. 2018, 14, 2468–2481, doi:10.3762/bjoc.14.223

Graphical Abstract
  • 108 (89%). Then, MnO2 oxidation of compound 108 offered the keto derivative in 90% yield. Corey–Bakshi–Shibata (CBS) reduction of the resulting keto derivative produced the hydroxy compound 109 (85%, ee 98%). Eventually, hydroxy olefin 109 was subjected to Sharpless asymmetric epoxidation to generate
PDF
Album
Review
Published 21 Sep 2018

One-pot synthesis of epoxides from benzyl alcohols and aldehydes

  • Edwin Alfonzo,
  • Jesse W. L. Mendoza and
  • Aaron B. Beeler

Beilstein J. Org. Chem. 2018, 14, 2308–2312, doi:10.3762/bjoc.14.205

Graphical Abstract
  • through in situ generation of sulfonium salts from benzyl alcohols and their subsequent deprotonation for use in Corey–Chaykovsky epoxidation of aldehydes. The generality of the method is exemplified by the synthesis of 34 epoxides that were made from an array of electronically and sterically varied
  • its original disclosure, particular in the area of asymmetric synthesis [22][23][24]. Other notable advancements include the expansion of its scope by using organic bases and a one-pot oxidation/epoxidation sequence of benzyl alcohols with manganese dioxide and an exogenous sulfonium salt [25][26
  • -workers [27] has demonstrated that these can be generated from inexpensive benzyl alcohols in the presence of tetrafluoroboric acid and a thio-trapping agent. Unfortunately, isolation of the salt was still required for use in epoxidation of carbonyl groups. Inspired by these aforementioned precedents, we
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2018

Studies towards the synthesis of hyperireflexolide A

  • G. Hari Mangeswara Rao

Beilstein J. Org. Chem. 2018, 14, 2106–2111, doi:10.3762/bjoc.14.185

Graphical Abstract
  • doublet with coupling constant 15.8 Hz (trans-configuration) for the α-proton of enone [34][35][36][37]. After successfully synthesizing the side chain via cross-metathesis, our next task was the steresoselective epoxidation of (E)-enone 11. Unfortunately, the stereoselective epoxidation of 11 under basic
  • conditions were unsuccessful [38], which prevented completion of the proposed synthetic sequence. Conclusion In conclusion, synthetic studies towards hyperireflexolide A, the synthetic precursor α,β-unsaturated ketone 11 was synthesized. Failure of the stereoselective epoxidation of 11 prevented completion
  • of the proposed synthetic sequence. Future studies will include the stereoselective epoxidation of 11 followed by opening of the epoxide and lactonization or 1,4-nucleophilic addition to the α,β-unsaturated ketone 11 followed by epoxidation of the resulted enolate with subsequent lactonization to
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2018

Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes

  • Xiang Li,
  • Pinhong Chen and
  • Guosheng Liu

Beilstein J. Org. Chem. 2018, 14, 1813–1825, doi:10.3762/bjoc.14.154

Graphical Abstract
  • epoxidation products. Not only terminal styrenes but also internal alkenes were suitable to this reaction, affording the anti-diamination products. The exact mode of stereoinduction with the new catalyst 23 was examined, and the single crystal X-ray structural analysis of 26 revealed that a water molecule
PDF
Album
Review
Published 18 Jul 2018

β-Hydroxy sulfides and their syntheses

  • Mokgethwa B. Marakalala,
  • Edwin M. Mmutlane and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1668–1692, doi:10.3762/bjoc.14.143

Graphical Abstract
  • presence of the hydroxy functional group acting as a transition-state analog. The synthesis of the inhibitors commenced with the conversion of aldehyde 127 into alkene 128 via a Wittig reaction followed by epoxidation to furnish epoxide 129. Regioselective opening of the epoxide ring with a thiolate gave
PDF
Album
Review
Published 05 Jul 2018

Recent applications of chiral calixarenes in asymmetric catalysis

  • Mustafa Durmaz,
  • Erkan Halay and
  • Selahattin Bozkurt

Beilstein J. Org. Chem. 2018, 14, 1389–1412, doi:10.3762/bjoc.14.117

Graphical Abstract
  • reaction in the following order: phase-transfer catalysis, Henry reaction, Suzuki–Miyaura cross-coupling and Tsuji–Trost allylic substitution, hydrogenation, Michael addition, aldol and multicomponent Biginelli reactions, epoxidation, Meerwein−Ponndorf−Verley reduction, aza-Diels−Alder and epoxide ring
  • six-membered-ring transition state similar to that described earlier by Feng et al. [69]. Epoxidation In 2014 Sciotto et al. reported the synthesis of two novel calix[4]arene–salen ligands 105a,b in 1,3-alternate conformation. Reaction of the salen ligands with appropriate metal acetate salt according
  • to the Scheme 31, led to the formation of uranyl and manganese complexes 106a,b–107a,b [70]. While Mn(III) complexes 107a,b have been used as catalysts for asymmetric epoxidation of styrene and substituted styrenes in the presence of NaClO as an oxygen donor and 4-phenylpyridine N-oxide (4-PPNO) as a
PDF
Album
Review
Published 08 Jun 2018
Other Beilstein-Institut Open Science Activities