Search for "fullerene" in Full Text gives 79 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2015, 11, 817–827, doi:10.3762/bjoc.11.91
Graphical Abstract
Figure 1: Expected coordination complexes of monovalent and bivalent structures (1 and 2a–c, respectively) wi...
Scheme 1: Synthesis of pyridine-PEG conjugate 5.
Scheme 2: Synthesis of pyridine-PEG conjugate 10.
Figure 2: Principle of the SMFS experiment. During retraction of the sample, possible interactions are probed...
Figure 3: Potential energy diagrams according to the KBE model for simultaneous and successive bond rupture a...
Figure 4: Most probable rupture forces plotted over their corresponding loading rate. Each point denotes for ...
Figure 5: Possible rupture mechanism describing the extraordinary long rupture length of system 2c. Starting ...
Figure 6: Most probable rupture forces at a logarithmic loading rate of 8.5 in relation to the corresponding ...
Beilstein J. Org. Chem. 2014, 10, 2920–2927, doi:10.3762/bjoc.10.310
Graphical Abstract
Scheme 1: Synthetic route to neutral water-soluble CD thioethers.
Figure 1: ESI MS spectra of CD derivatives 2b1 (left) and 3b1 (right).
Figure 2: 1H NMR spectra of a) the statistical CD derivatives 2b1 and b) the corresponding uniform derivative ...
Figure 3: Transmission (λ = 670 nm) of aqueous solutions (1.0 wt %) of 2b1 (red) and 3b1 (blue).
Figure 4: Decay of the relative vapour pressure A/A0 as function of the host concentration 3b1 measured by GC...
Beilstein J. Org. Chem. 2014, 10, 2683–2695, doi:10.3762/bjoc.10.283
Graphical Abstract
Figure 1: Chemical structures of DPP core 1 and BODIPY core 2.
Scheme 1: Synthesis of triads 9 and 10. Reagents and conditions: (i) phosphoryl chloride, N,N-dimethylformami...
Figure 2: Cyclic voltammetry of 9 (black) and 10 (red) in solution (left) and thin-film (right). The experime...
Figure 3: Normalised UV–vis absorption spectra of 9 (black), 10 (red) and DPP core (11, green) in dichloromet...
Figure 4: Structure of the dithieno-DPP (11) core.
Figure 5: BOD-T4 structure reported by Harriman et al. [50].
Figure 6: Electrostatic potential charges for each unit in compounds 9 and 10: radical anion (blue), neutral ...
Figure 7: Electrostatic potential charges for each unit in (2Th)2DPP and (3Th)2DPP radical anion (blue), neut...
Figure 8: Frontier orbitals for radical anion SOMO (top), neutral HOMO (bottom) of 9 (left) and 10 (right).
Figure 9: Incident photon to converted electron (IPCE) ratio or external quantum efficiency (EQE) for 9:PC71B...
Figure 10: J–V for 9:PC71BM (1:3) and 10:PC71BM (1:3) in the dark.
Figure 11: J–V for 9:PC71BM (1:3) and 10:PC71BM (1:3) under illumination at 100 mW cm−2 with an AM1.5 G source....
Figure 12: Tapping mode AFM height images for 9:PC71BM (1:3) (left) and 10:PC71BM (1:3) (right) on fused silic...
Beilstein J. Org. Chem. 2014, 10, 2089–2121, doi:10.3762/bjoc.10.218
Graphical Abstract
Figure 1: Cyclic chiral phosphines based on bridged-ring skeletons.
Figure 2: Cyclic chiral phosphines based on binaphthyl skeletons.
Figure 3: Cyclic chiral phosphines based on ferrocene skeletons.
Figure 4: Cyclic chiral phosphines based on spirocyclic skeletons.
Figure 5: Cyclic chiral phosphines based on phospholane ring skeletons.
Figure 6: Acyclic chiral phosphines.
Figure 7: Multifunctional chiral phosphines based on binaphthyl skeletons.
Figure 8: Multifunctional chiral phosphines based on amino acid skeletons.
Scheme 1: Asymmetric [3 + 2] annulations of allenoates with electron-deficient olefins, catalyzed by the chir...
Scheme 2: Asymmetric [3 + 2] annulations of allenoate and enones, catalyzed by the chiral binaphthyl-based ph...
Scheme 3: Asymmetric [3 + 2] annulations of N-substituted olefins and allenoates, catalyzed by the chiral bin...
Scheme 4: Asymmetric [3 + 2] annulations of 2-aryl-1,1-dicyanoethylenes with ethyl allenoate, catalyzed by th...
Scheme 5: Asymmetric [3 + 2] annulations of 3-alkylideneindolin-2-ones with ethyl allenoate, catalyzed by the...
Scheme 6: Asymmetric [3 + 2] annulations of 2,6-diarylidenecyclohexanones with allenoates, catalyzed by the c...
Scheme 7: Asymmetric [3 + 2] annulations of allenoate with alkylidene azlactones, catalyzed by the chiral bin...
Scheme 8: Asymmetric [3 + 2] annulations of C60 with allenoates, catalyzed by the chiral phosphine B6.
Scheme 9: Asymmetric [3 + 2] annulations of α,β-unsaturated esters and ketones with an allenoate, catalyzed b...
Scheme 10: Asymmetric [3 + 2] annulations of exocyclic enones with allenoates, catalyzed by the ferrocene-modi...
Scheme 11: Asymmetric [3 + 2] annulations of enones with an allenylphosphonate, catalyzed by the ferrocene-mod...
Scheme 12: Asymmetric [3 + 2] annulations of 3-alkylidene-oxindoles with ethyl allenoate, catalyzed by the fer...
Scheme 13: Asymmetric [3 + 2] annulations of dibenzylideneacetones with ethyl allenoate, catalyzed by the ferr...
Scheme 14: Asymmetric [3 + 2] annulations of trisubstituted alkenes with ethyl allenoate, catalyzed by the fer...
Scheme 15: Asymmetric [3 + 2] annulations of 2,6-diarylidenecyclohexanones with allenoates, catalyzed by the f...
Scheme 16: Asymmetric [3 + 2] annulations of α,β-unsaturated ketones with ethyl allenoates, catalyzed by the f...
Scheme 17: Asymmetric [3 + 2] annulations of α,β-unsaturated esters with allenoates, catalyzed by the ferrocen...
Scheme 18: Asymmetric [3 + 2] annulations of alkylidene azlactones with allenoates, catalyzed by the chiral sp...
Scheme 19: Asymmetric [3 + 2] annulations of α-trimethylsilyl allenones and electron-deficient olefins, cataly...
Scheme 20: Asymmetric [3 + 2] annulations of α,β-unsaturated ketones with an allenone, catalyzed by the chiral...
Scheme 21: Asymmetric [3 + 2] annulations of cyclic enones with allenoates, catalyzed by the chiral α-amino ac...
Scheme 22: Asymmetric [3 + 2] annulations of arylidenemalononitriles and analogues with an allenoate, catalyze...
Scheme 23: Asymmetric [3 + 2] annulations of α,β-unsaturated esters with an allenoate, catalyzed by the chiral...
Scheme 24: Asymmetric [3 + 2] annulations of 3,5-dimethyl-1H-pyrazole-derived acrylamides with an allenoate, c...
Scheme 25: Asymmetric [3 + 2] annulations of maleimides with allenoates, catalyzed by the chiral phosphine H10....
Scheme 26: Asymmetric [3 + 2] annulations of α-substituted acrylates with allenoate, catalyzed by the chiral p...
Scheme 27: Asymmetric [3 + 2] annulation of an N-tosylimine with an allenoate, catalyzed by the chiral phosphi...
Scheme 28: Asymmetric [3 + 2] annulations of N-tosylimines with an allenoate, catalyzed by the chiral phosphin...
Scheme 29: Asymmetric [3 + 2] annulations of N-tosylimines with an allenoate, catalyzed by the chiral phosphin...
Scheme 30: Asymmetric [3 + 2] annulations of N-diphenylphosphinoyl aromatic imines with butynoates, catalyzed ...
Scheme 31: Asymmetric [3 + 2] annulations of N-tosylimines with allenylphosphonates, catalyzed by the chiral p...
Scheme 32: Asymmetric [3 + 2] annulation of an N-tosylimine with an allenoate, catalyzed by the chiral phosphi...
Scheme 33: Asymmetric [3 + 2] annulations of N-diphenylphosphinoyl aromatic imines with allenoates (top), cata...
Scheme 34: Asymmetric [3 + 2] annulation of N-diphenylphosphinoylimines with allenoates, catalyzed by the chir...
Scheme 35: Asymmetric [3 + 2] annulation of an azomethine imine with an allenoate, catalyzed by the chiral pho...
Scheme 36: Asymmetric [3 + 2] annulations between α,β-unsaturated esters/ketones and 3-butynoates, catalyzed b...
Scheme 37: Asymmetric intramolecular [3 + 2] annulations of electron-deficient alkenes and MBH carbonates, cat...
Scheme 38: Asymmetric [3 + 2] annulations of methyleneindolinone and methylenebenzofuranone derivatives with M...
Scheme 39: Asymmetric [3 + 2] annulations of activated isatin-based alkenes with MBH carbonates, catalyzed by ...
Scheme 40: Asymmetric [3 + 2] annulations of maleimides with MBH carbonates, catalyzed by the chiral phosphine ...
Scheme 41: A series of [3 + 2] annulations of various activated alkenes with MBH carbonates, catalyzed by the ...
Scheme 42: Asymmetric [3 + 2] annulations of an alkyne with isatins, catalyzed by the chiral phosphine F1.
Scheme 43: Asymmetric [4 + 2] annulations catalyzed by the chiral phosphine B1.
Scheme 44: Asymmetric [4 + 2] annulations catalyzed by the chiral phosphine H5.
Scheme 45: Asymmetric [4 + 2] annulations catalyzed by the chiral phosphines H13 and H12.
Scheme 46: Asymmetric [4 + 2] annulations catalyzed by the chiral phosphine H6.
Scheme 47: Kerrigan’s [2 + 2] annulations of ketenes with imines, catalyzed by the chiral phosphine B7.
Scheme 48: Asymmetric [4 + 1] annulations, catalyzed by the chiral phosphine G6.
Scheme 49: Asymmetric homodimerization of ketenes, catalyzed by the chiral phosphine F5 and F6.
Scheme 50: Aza-MBH/Michael reactions, catalyzed by the chiral phosphine G1.
Scheme 51: Tandem RC/Michael additions, catalyzed by the chiral phosphine H14.
Scheme 52: Intramolecular tandem RC/Michael addition, catalyzed by the chiral phosphine H15.
Scheme 53: Double-Michael addition, catalyzed by the chiral aminophosphine G9.
Scheme 54: Tandem Michael addition/Wittig olefinations, mediated by the chiral phosphine BIPHEP.
Scheme 55: Asymmetric Michael additions, catalyzed by the chiral phosphines H7, H8, and H9.
Scheme 56: Asymmetric γ-umpolung additions, catalyzed by the chiral phosphine A1.
Scheme 57: Asymmetric γ-umpolung additions, catalyzed by the chiral phosphines E2 and E3.
Scheme 58: Intramolecular γ-additions of hydroxy-2-alkynoates, catalyzed by the chiral phosphine D2.
Scheme 59: Intra-/intermolecular γ-additions, catalyzed by the chiral phosphine D2.
Scheme 60: Intermolecular γ-additions, catalyzed by the chiral phosphines B5 and B3.
Scheme 61: Intermolecular γ-additions, catalyzed by the chiral phosphines E6 and B4.
Scheme 62: Asymmetric allylic substitution of MBH acetates, catalyzed by the chiral phosphine G2.
Scheme 63: Allylic substitutions between MBH acetates or carbonates and an array of nucleophiles, catalyzed by...
Scheme 64: Asymmetric acylation of diols, catalyzed by the chiral phosphines E4 and E5.
Scheme 65: Kinetic resolution of secondary alcohols, catalyzed by the chiral phosphine E8 and E9.
Beilstein J. Org. Chem. 2014, 10, 1504–1512, doi:10.3762/bjoc.10.155
Graphical Abstract
Figure 1: Structure of bis(β-lactosyl)-[60]fullerene (bis-Lac-C60).
Scheme 1: Synthesis of bis-Lac-C60. Reagents and conditions: (a) 6-chloro-1-hexanol, TMSOTf, CH2Cl2, −40 °C, ...
Figure 2: Precipitation assay of bis-Lac-C60 colloidal solution. The tubes were allowed to stand for 10 min a...
Figure 3: Schematic image for the quantitative analysis of ricin protein in the colloidal suspension of bis-L...
Figure 4: A modified procedure for the rapid detection and the efficient decontamination of ricin and ricin-l...
Beilstein J. Org. Chem. 2014, 10, 1121–1128, doi:10.3762/bjoc.10.111
Graphical Abstract
Figure 1: Structures of the indolinone-substituted methanofullerenes prepared earlier.
Scheme 1: The two-step synthetic pathway towards the methanofullerenes AIM 1–9.
Figure 2: Optical absorption spectra of AIM 9, PCBM, and C60 in CH2Cl2 (2·10−5 mol·L−1, the cell thickness d ...
Figure 3: Cyclic voltammetry curve of AIM 9.
Figure 4: J–V characteristics of P3HT/AIMs and reference P3HT/PCBM devices for the P3HT/fullerene weight rati...
Figure 5: Absorption spectra of P3HT/fullerene blended films. The P3HT/PCBM blend was annealed during 15 min ...
Figure 6: AFM topography image of an as-casted 1:1 P3HT:AIM 7 blended film.
Beilstein J. Org. Chem. 2014, 10, 1006–1016, doi:10.3762/bjoc.10.100
Graphical Abstract
Figure 1: Phenothiazine–anthraquinone dyad 1, donor-only (2) and acceptor-only (3) models assembled by Ugi 4C...
Scheme 1: Ugi 4CR synthesis of donor–anthraquinone dyads 8.
Scheme 2: Ugi 4CR synthesis of donor-only reference systems 10.
Figure 2: Molecular structure of S(O)-1 (left) (30% ellipsoids, except for the CH3CH2 end of the hexyl group,...
Figure 3: Cyclic voltammogram of dyad 8c (recorded in CH2Cl2, T = 298 K, c (8c) = 0.1 mol·L−1, Pt working ele...
Figure 4: DFT-computed (B3LYP, 6-311G*) frontier molecular orbitals HOMO (bottom) and LUMO (top) of the pheno...
Figure 5: Normalized absorption spectra of the phenothiazine–anthraquinone dyad 8c (recorded in CH2Cl2, c (8c...
Figure 6: Absorption spectra of Do–anthraquinone dyads 8c (top) and 8e (bottom) with the corresponding refere...
Figure 7: Normalized absorption and emission spectra of Ugi-donor compounds 2 and 10 (recorded in CH2Cl2, T =...
Figure 8: Emission spectra of donor-only system 2 phenothiazine–anthraquinone dyads 8a,b (top), and the donor...
Beilstein J. Org. Chem. 2014, 10, 956–968, doi:10.3762/bjoc.10.94
Graphical Abstract
Figure 1: Prototypical open and closed geodesic polyarenes.
Figure 2: Planar vs pyramidalized π-system.
Figure 3: Selected examples of geodesic polyarenes synthesized by FVP.
Scheme 1: Covalent functionalization of fullerene C60 by the Bingel–Hirsch reaction and the Prato reaction.
Scheme 2: Fullerene-type chemistry at interior carbon atoms of corannulene (1) and diindenochrysene (10).
Figure 4: POAV angles of fullerene C60 (2), corannulene (1), and diindenochrysene (10).
Scheme 3: Synthesis of circumtrindene (6) by FVP.
Scheme 4: Synthetic route to 3,9,15-trichlorodecacyclene (12).
Figure 5: POAV angle and bond lengths of circumtrindene.
Scheme 5: Bingel–Hirsch reaction of circumtrindene (6).
Scheme 6: Proposed mechanism for the Bingel–Hirsch reaction of circumtrindene (6).
Scheme 7: Prato reaction of circumtrindene (6).
Figure 6: LUMO orbital map of circumtrindene (B3LYP/6-31G*). The darkest blue areas correspond to the regions...
Figure 7: Electrostatic potentials on the surfaces of circumtrindene (B3LPY/6-31G*).
Figure 8: Monoindeno- (25), diindeno- (26), and triindenocircumtrindene (27).
Figure 9: Two different types of rim carbon atoms on circumtrindene.
Scheme 8: Site-selective peripheral monobromination of circumtrindene.
Scheme 9: Suzuki coupling and ring-closing reactions toward indenocircumtrindene (25).
Scheme 10: Suzuki coupling to prepare compound 30.
Figure 10: Chemical shifts of ortho-methyl groups in 30 and 31.
Beilstein J. Org. Chem. 2014, 10, 794–807, doi:10.3762/bjoc.10.75
Graphical Abstract
Figure 1: Structure of the central cores and lengthening arms.
Scheme 1: Synthesis of compounds of series I–III.
Scheme 2: Synthesis of compounds of series IV–VI.
Figure 2: Chemical formulae of studied compounds I–VI.
Figure 3: DSC plots for compounds a) IIb, b) IVb and c) Vb taken on second heating (upper curve) and cooling ...
Figure 4: Planar texture of Ib in the SmCAPA phase at temperature T = 130 °C (a) without field, and (b) in th...
Figure 5: Planar texture of IIb (a) at the phase transition from the SmAP (upper right corner) to the SmCAPA ...
Figure 6: Switching current for compound IIb at T = 150 °C, taken in the SmCAPA phase at a triangular field, E...
Figure 7: Planar texture of IIb compound the SmCSPA phase at T = 130 °C, (a) without applied field and (b) in...
Figure 8: Temperature dependence of the layer spacing value, d, and intensity of the corresponding X-ray sign...
Figure 9: X-ray patterns of a partially aligned sample of IIb in (a) the SmCG phase at 148 °C and (b) in the ...
Figure 10: 3-Dimensional plot of the imaginary part of permittivity, ε’’, versus temperature and frequency for ...
Figure 11: Temperature dependence of the dielectric strength, Δε, and relaxation frequency, fr, for IIb.
Figure 12: Schematic organization of bent-shaped molecules in layers for the SmCAPA–SmCG–SmCSPA sequence of me...
Beilstein J. Org. Chem. 2014, 10, 714–721, doi:10.3762/bjoc.10.65
Graphical Abstract
Scheme 1: Synthesis of [4 + 2] adducts of La2@C80.
Figure 1: HPLC profiles of the reaction solutions (black) before and (red) after the reaction of La2@C80 and ...
Figure 2: MALDI–TOF mass (negative mode) spectra of (a) 3b and (b) 4b, using 1,1,4,4-tetraphenyl-1,3-butadien...
Figure 3: UV–vis/near-IR absorption spectra of 3b and 4b recorded by the diode array detector of the HPLC app...
Figure 4: MALDI–TOF mass spectrum (negative mode) of the reaction mixture from La2@C80 and 1a, using 1,1,4,4-...
Figure 5: 1H NMR spectra of (a) the mixture of 3a and 4a in C2D2Cl4 at 248 K, and (b) isolated 4a at 230 K, r...
Figure 6: HPLC profiles of the mixture of 3a and 4a, (a) after heating in refluxing 1,2-dichlorobenzene and (...
Figure 7: HPLC profiles of the reaction mixture of 3b and 4b, (black) before and (red) after heating in reflu...
Figure 8: UV–vis/near-IR absorption spectra of 3b and 4a in toluene.
Figure 9: Temperature-dependent 1H NMR spectra of 4a in C2D2Cl4 (left) at 300 MHz, and (right) at 500 MHz for...
Scheme 2: Synthesis of [4 + 2] adducts of La@C82.
Figure 10: HPLC profiles of the reaction mixture for 5b. Conditions: column, Buckyprep (Ø 4.6 mm × 250 mm); el...
Figure 11: MALDI–TOF mass spectra (negative mode) of 5b, using 1,1,4,4-tetraphenyl-1,3-butadiene as matrix.
Figure 12: Vis–near-IR spectra of 5b, 6 and La@C82 in CS2.
Figure 13: 1H NMR spectrum of [5b]− in acetone-d6/CS2 (3/1 = v/v) at 223 K.
Figure 14: 13C NMR spectrum of [5b]− in acetone-d6/CS2 (3/1 = v/v).
Figure 15: HPLC profiles for comparison of the thermal stabilities of (a) 5b and (b) 6 at 30 °C. Conditions: c...
Beilstein J. Org. Chem. 2014, 10, 332–343, doi:10.3762/bjoc.10.31
Graphical Abstract
Figure 1: Structures of triads 1–6 and precursor molecules 7–8 used for the synthesis of the asymmetric syste...
Scheme 1: The one-step synthetic procedure towards the oxalate-bridged fullerene triads 4 and 6.
Scheme 2: Attempted synthetic pathway towards the formation of the C60–C70 oxalate bridged fullerene triad al...
Scheme 3: Synthetic pathway to the asymmetric fullerene triad 5 allowing introduction of the fullerene cages ...
Figure 2: Cyclic voltammograms of the terephthalate bridged triads 1–3 (left) and oxalate bridged triads 4–6 ...
Figure 3: Fluid solution EPR spectra recorded at 297 K for the two electron reduced species of compounds 1 an...
Figure 4: Frozen solution EPR spectra of triads 42− (a) and 12− (c), prepared by two electron reduction of 4 ...
Beilstein J. Org. Chem. 2013, 9, 1492–1500, doi:10.3762/bjoc.9.170
Graphical Abstract
Scheme 1: (a) Preparation of thiophene Grignard monomer and synthesis of P3HT by Kumada catalyst transfer pol...
Figure 1: Plot of number-average molecular weight, Mn, versus monomer–catalyst ratio [M]0/[I]0 for batch and ...
Figure 2: MALDI mass spectrum of low-molecular-weight preparation (GPC, Mn = 6.2 kg/mol) of P3HT in continuou...
Figure 3: Plot of number-average molecular weight, Mn, versus monomer–catalyst ratio [M]0/[I]0 for batch and ...
Scheme 2: Schematic representation of the telescoped preparation of P3HT in a flow reactor.
Figure 4: 1H NMR (CDCl3, 500 MHz) spectra of P3HT samples prepared in (a) flow and (b) batch show comparable ...
Figure 5: (a) Schematic diagram of the photovoltaic device geometry and (b) J–V curves of BHJ solar cells wit...
Beilstein J. Org. Chem. 2013, 9, 1285–1295, doi:10.3762/bjoc.9.145
Graphical Abstract
Scheme 1: Proposed mechanisms for the formation of fullerenol anions and distonic radical anions observed by ...
Figure 1: Negative-ion mass spectra for a 0.5 × 10−5 M solution of C60(OH)24 in ultrapure water: (a) full sca...
Scheme 2: Examples of proposed structures for the main deprotonated molecules and final distonic molecular io...
Scheme 3: Proposed (−)ESI-MS ionization mechanisms for fullerenol C60(OH)24 in pure water.
Figure 2: Negative-ion mass spectra of a 0.5 × 10−5 M aqueous solution of C60(OH)24 in ammonia solution: (a) ...
Figure 3: Positive ionization ESI mass spectrum of C60(OH)24 in (a) 3 × 10−1 M (b) 2 × 10−2 M aqueous ammonia...
Scheme 4: Proposed (+)ESI-MS ionization mechanisms for fullerenol C60(OH)24 in ammonia solution.
Beilstein J. Org. Chem. 2013, 9, 1243–1251, doi:10.3762/bjoc.9.141
Graphical Abstract
Figure 1: Labelled truxene and compounds T1 and T4.
Scheme 1: Synthesis of the thiophene-fluorene arm for the 3-isomer.
Scheme 2: Synthesis of the thiophene-fluorene arm for the 4-isomer.
Scheme 3: Coupling of arms to the truxene core.
Scheme 4: Synthesis of T4-4FTh.
Figure 2: Normalised absorbance (solid) and emission (dashed) of materials in solution (dichloromethane).
Figure 3: HOMO−1 (bottom, left), HOMO (bottom, right), LUMO (top, left) and LUMO+1 (top, right) of T1-3FTh.
Figure 4: HOMO−1 (bottom, left), HOMO (bottom, right), LUMO (top, left) and LUMO+1 (top, right) of T1-4FTh.
Beilstein J. Org. Chem. 2013, 9, 1102–1110, doi:10.3762/bjoc.9.122
Graphical Abstract
Figure 1: N-ethylhexyl-substituted (1) [20] and target free N–H (2) cyanopyridone structures.
Scheme 1: Synthesis of the cyanopyridone 2, reagents and conditions: (i) Pd(PPh3)4, Cs2CO3, toluene, reflux, ...
Figure 2: (a) Chloroform (solid line) and thin-film (dashed line) UV–vis absorption and emission spectra and ...
Figure 3: The concentration dependence of (a) the NH 1H NMR chemical shift and (b) the vinyl proton chemical ...
Figure 4: AFM height image of observed nanostructures of films drop cast from (a) 10 mg/mL and (b) 1 mg/mL ch...
Figure 5: Dimeric structures of 2. (a) centrosymmetric dimer of 2; (b) bond-rotated centrosymmetric dimer of 2...
Figure 6: Schematic representation of self-complementary interactions leading to one-dimensional chains.
Beilstein J. Org. Chem. 2012, 8, 2025–2052, doi:10.3762/bjoc.8.229
Graphical Abstract
Figure 1: An immersion-well batch reactor with 125 W medium pressure Hg lamp.
Figure 2: Transmission profile of a 0.05 M solution, ε = 200 M−1 cm−1.
Figure 3: Schematic of a typical microflow photochemical reactor (above) and detail of a triple-channel micro...
Figure 4: Schematic of a typical macroflow photochemical reactor (above) and images of the FEP photochemical ...
Scheme 1: [2 + 2] photocycloadditions of enones with enol derivatives.
Scheme 2: Competing reactions in an intramolecular [2 + 2] photocycloaddition.
Scheme 3: Diastereocontrolled cycloaddition of a cyclic enone with cyclopentene.
Scheme 4: Comparison of yields and reaction times for a batch reactor with a microflow system.
Scheme 5: Intramolecular [2 + 2] photocycloaddition.
Scheme 6: Paterno–Büchi reaction of benzophenone with an allylic alcohol.
Scheme 7: Photooxygenation of cyclopentadiene.
Scheme 8: Preparation of the anthelmintic ascaridole 23.
Scheme 9: Production of rose oxide 27 from (−)-β-citronellol (24).
Scheme 10: Photocatalytic alkylation of benzylamine.
Scheme 11: Photocatalytic reduction of 4-nitroacetophenone.
Scheme 12: Conversion of L-lysine to L-pipecolinic acid.
Scheme 13: Photocatalytic hydrodehalogenation.
Scheme 14: Photocatalytic aza-Henry reactions.
Scheme 15: Photocatalytic α-alkylation of aliphatic ketones.
Scheme 16: Decarboxylative photochemical additions.
Scheme 17: Photochemical addition of isopropanol to furanones.
Scheme 18: Photochemical addition of methanol to limonene.
Scheme 19: Light-promoted reduction of flavone.
Scheme 20: Photoreduction of benzophenone with benzhydrol.
Scheme 21: Barton reaction in a microflow system.
Scheme 22: Microflow synthesis of vitamin D3.
Scheme 23: photochemical chlorination of cyclohexane.
Scheme 24: photochemical cyanation of pyrene.
Scheme 25: Intermolecular [2 + 2] cycloaddition of maleimide (76) and intramolecular [2 + 2] cycloaddition of ...
Scheme 26: Intramolecular [5 + 2] cycloaddition of maleimide under flow conditions.
Scheme 27: Intramolecular [5 + 2] cycloaddition as a key step in the synthesis of (±)-neostenine.
Scheme 28: In situ generation of a thioaldehyde by photolysis of a phenacyl sulfide.
Scheme 29: Photodimerisation of maleic anhydride.
Scheme 30: [2 + 2] cycloaddition of a chiral enone with ethylene.
Scheme 31: Intramolecular [2 + 2] cycloaddition of a cyclopentenone.
Scheme 32: Photochemical Wolff rearrangement and cyclisation to β-lactams.
Scheme 33: Photochemical rearrangement of aryl azides.
Scheme 34: Rearrangement of quinoline N-oxides to quinolones.
Scheme 35: Photochemical rearrangement of cyclobutenones.
Scheme 36: Photoisomerisation en route to a vitamin-D derivative.
Scheme 37: Schematic of the Seeberger photooxygenation apparatus and sensitised photooxygenation of citronello...
Scheme 38: Sensitised photooxygenation of dihydroartemisinic acid.
Scheme 39: Photochemical preparation of CpRu(MeCN)3PF6.
Scheme 40: In situ photochemical generation and reaction of a [CpRu]+ catalyst.
Scheme 41: Intermolecular alkene–alkyne coupling with photogenerated catalyst.
Scheme 42: PET deoxygenation of nucleosides.
Scheme 43: Photochemical defluorination of DABFT.
Scheme 44: Aromatic azide reduction by visible-light-mediated photocatalysis.
Scheme 45: Examples of visible-light-mediated reactions.
Scheme 46: Visible-light-mediated formation of iminium ions.
Scheme 47: Examples of visible-light-mediated photocatalytic reactions.
Scheme 48: Anhydride formation from a visible-light-mediated process.
Scheme 49: Light-mediated conjugate addition of glycosyl bromide 141 to acrolein.
Scheme 50: Visible-light-mediated photocyclisation to [5]helicene.
Beilstein J. Org. Chem. 2012, 8, 1936–1998, doi:10.3762/bjoc.8.225
Graphical Abstract
Figure 1: Loschmidt’s structure proposal for benzene (1) (Scheme 181 from [3]) and the corresponding modern stru...
Figure 2: The first isolated bisallenes.
Figure 3: Carbon skeletons of selected bisallenes discussed in this review.
Scheme 1: The preparation of 1,2,4,5-hexatetraene (2).
Scheme 2: The preparation of a conjugated bisallene by the DMS-protocol.
Scheme 3: Preparation of the 3-deuterio- and 3,4-dideuterio derivatives of 24.
Scheme 4: A versatile method to prepare alkylated conjugated bisallenes and other allenes.
Scheme 5: A preparation of 3,4-dimethyl-1,2,4,5-hexatetraene (38).
Scheme 6: A (C6 + 0)-approach to 1,2,4,5-hexatetraene (2).
Scheme 7: The preparation of a fully alkylated bisallenes from a 2,4-hexadiyne-1,6-diol diacetate.
Scheme 8: The preparation of the first phenyl-substituted conjugated bisallenes 3 and 4.
Scheme 9: Selective hydrogenation of [5]cumulenes to conjugated bisallenes: another (C6 + 0)-route.
Scheme 10: Aryl-substituted conjugated bisallenes by a (C3 + C3)-approach.
Scheme 11: Hexaphenyl-1,2,4,5-hexatetraene (59) by a (C3 + C3)-approach.
Scheme 12: An allenation route to conjugated bisallenes.
Scheme 13: The preparation of 3,4-difunctionalized conjugated bisallenes.
Scheme 14: Problems during the preparation of sulfur-substituted conjugated bisallenes.
Scheme 15: The preparation of 3,4-dibromo bisallenes.
Scheme 16: Generation of allenolates by an oxy-Cope rearrangement.
Scheme 17: A linear trimerization of alkynes to conjugated bisallenes: a (C2 + C2 + C2)-protocol.
Scheme 18: Preparation of a TMS-substituted conjugated bisallene by a C3-dimerization route.
Scheme 19: A bis(trimethylsilyl)bisallene by a C3-coupling protocol.
Scheme 20: The rearrangement of highly substituted benzene derivatives into their conjugated bisallenic isomer...
Scheme 21: From fully substituted benzene derivatives to fully substituted bisallenes.
Scheme 22: From a bicyclopropenyl to a conjugated bisallene derivative.
Scheme 23: The conversion of a bismethylenecyclobutene into a conjugated bisallene.
Scheme 24: The preparation of monofunctionalized bisallenes.
Scheme 25: Preparation of bisallene diols and their cyclization to dihydrofurans.
Scheme 26: A 3,4-difunctionalized conjugated bisallene by a C3-coupling process.
Scheme 27: Preparation of a bisallenic diketone by a coupling reaction.
Scheme 28: Sulfur and selenium-substituted bisallenes by a [2.3]sigmatropic rearrangement.
Scheme 29: The biallenylation of azetidinones.
Scheme 30: The preparation of a fully ferrocenylated conjugated bisallene.
Scheme 31: The first isomerization of a 1,5-hexadiyne to a 1,2,4,5-hexatetraene.
Scheme 32: The preparation of alkynyl-substituted bisallenes by a C3-dimerization protocol.
Scheme 33: Preparation of another completely ferrocenylated bisallene.
Scheme 34: The cyclization of 1,5-hexadiyne (129) to 3,4-bismethylenecyclobutene (130) via 1,2,4,5-hexatetraen...
Scheme 35: Stereochemistry of the thermal cyclization of bisallenes to bismethylenecyclobutenes.
Scheme 36: Bisallene→bismethylenecyclobutene ring closures in the solid state.
Scheme 37: A bisallene cyclization/dimerization reaction.
Scheme 38: A selection of Diels–Alder additions of 1,2,4,5-hexatetraene with various double-bond dienophiles.
Scheme 39: The stereochemistry of the [2 + 4] cycloaddition to conjugated bisallenes.
Scheme 40: Preparation of azetidinone derivatives from conjugated bisallenes.
Scheme 41: Cycloaddition of heterodienophiles to a conjugated bisallene.
Scheme 42: Addition of triple-bond dienophiles to conjugated bisallenes.
Scheme 43: Sulfur dioxide addition to conjugated bisallenes.
Scheme 44: The addition of a germylene to a conjugated bisallene.
Scheme 45: Trapping of conjugated bisallenes with phosphinidenes.
Scheme 46: The cyclopropanantion of 1,2,4,5-hexatetraene (2).
Scheme 47: Photochemical reactions involving conjugated bisallenes.
Scheme 48: Base-catalyzed isomerizations of conjugated bisallenes.
Scheme 49: Ionic additions to a conjugated bisallene.
Scheme 50: Oxidation reactions of a conjugated bisallene.
Scheme 51: The mechanism of oxidation of the bisallene 24.
Scheme 52: CuCl-catalyzed cyclization of 1,2,4,5-hexatetraene (2).
Scheme 53: The conversion of conjugated bisallenes into cyclopentenones.
Scheme 54: Oligomerization of a conjugated bisallene by nickel catalysts.
Scheme 55: Generation of 1,2,5,6-heptatetraene (229) as a reaction intermediate.
Scheme 56: The preparation of a stable derivative of 1,2,5,6-heptatetraene.
Scheme 57: A bisallene with a carbonyl group as a spacer element.
Scheme 58: The first preparation of 1,2,6,7-octatetraene (242).
Scheme 59: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of enynes.
Scheme 60: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of homoallenyl bromides.
Scheme 61: Preparation of 1,2,6,7-octatetraenes by alkylation of propargylic substrates.
Scheme 62: Preparation of two highly functionalized 1,2,6,7-octatetraenes.
Scheme 63: Preparation of several higher α,ω-bisallenes.
Scheme 64: Preparation of different alkyl derivatives of α,ω-bisallenes.
Scheme 65: The preparation of functionalized 1,2,7,8-nonatetraene derivatives.
Scheme 66: Preparation of functionalized α,ω-bisallenes.
Scheme 67: The preparation of an α,ω-bisallene by direct homologation of an α,ω-bisalkyne.
Scheme 68: The gas-phase pyrolysis of 4,4-dimethyl-1,2,5,6-heptatetraene (237).
Scheme 69: Gas-phase pyrolysis of 1,2,6,7-octatetraene (242).
Scheme 70: The cyclopropanation of 1,2,6,7-octatetraene (242).
Scheme 71: Intramolecular cyclization of 1,2,6,7-octatetraene derivatives.
Scheme 72: The gas-phase pyrolysis of 1,2,7,8-nonatetraene (265) and 1,2,8,9-decatetraene (266).
Scheme 73: Rh-catalyzed cyclization of a functionalized 1,2,7,8-nonatetraene.
Scheme 74: A triple cyclization involving two different allenic substrates.
Scheme 75: Bicyclization of keto derivatives of 1,2,7,8-nonatetraene.
Scheme 76: The preparation of complex organic compounds from functionalized bisallenes.
Scheme 77: Cycloisomerization of an α,ω-bisallene containing a C9 tether.
Scheme 78: Organoborane polymers from α,ω-bisallenes.
Scheme 79: Preparation of trans- (337) and cis-1,2,4,6,7-octapentaene (341).
Scheme 80: The preparation of 4-methylene-1,2,5,6-heptatetraene (349).
Scheme 81: The preparation of acetylenic bisallenes.
Scheme 82: The preparation of derivatives of hydrocarbon 351.
Scheme 83: The construction of macrocyclic alleno-acetylenes.
Scheme 84: Preparation and reactions of 4,5-bismethylene-1,2,6,7-octatetraene (365).
Scheme 85: Preparation of 1,2-bis(propadienyl)benzene (370).
Scheme 86: The preparation of 1,4-bis(propadienyl)benzene (376).
Scheme 87: The preparation of aromatic and heteroaromatic bisallenes by metal-mediated coupling reactions.
Scheme 88: Double cyclization of an aromatic bisallene.
Scheme 89: Preparation of an allenic [15]paracyclophane by a ring-closing metathesis reaction of an aromatic α...
Scheme 90: Preparation of a macrocyclic ring system containing 1,4-bis(propadienyl)benzene units.
Scheme 91: Preparation of copolymers from 1,4-bis(propadienyl)benzene (376).
Scheme 92: A boration/copolymerization sequence of an aromatic bisallene and an aromatic bisacetylene.
Scheme 93: Formation of a layered aromatic bisallene.
Figure 4: The first members of the semicyclic bisallene series.
Scheme 94: Preparation of the first bis(vinylidene)cyclobutane derivative.
Scheme 95: Dimerization of strain-activated cumulenes to bis(vinylidene)cyclobutanes.
Scheme 96: Photodimerization of two fully substituted butatrienes in the solid state.
Scheme 97: Preparation of the two parent bis(vinylidene)cyclobutanes.
Scheme 98: The preparation of 1,3-bis(vinylidene)cyclopentane and its thermal isomerization.
Scheme 99: The preparation of the isomeric bis(vinylidene)cyclohexanes.
Scheme 100: Bi- and tricyclic conjugated bisallenes.
Scheme 101: A selection of polycyclic bisallenes.
Scheme 102: The first endocyclic bisallenes.
Figure 5: The stereochemistry of 1,2,6,7-cyclodecatetraene.
Scheme 103: The preparation of several endocyclic bisallenes.
Scheme 104: Synthesis of diastereomeric derivatives of 1,2,6,7-cyclodecatetraene.
Scheme 105: Preparation of a derivative of 1,2,8,9-cyclotetradecatetraene.
Scheme 106: The preparation of keto derivatives of cyclic bisallenes.
Scheme 107: The preparation of cyclic biscumulenic ring systems.
Scheme 108: Cyclic bisallenes in natural- and non-natural-product chemistry.
Scheme 109: The preparation of iron carbonyl complexes from cyclic bisallenes.
Figure 6: A selection of unknown exocyclic bisallenes that should have interesting chemical properties.
Scheme 110: The thermal isomerization of 1,2-diethynylcyclopropanes and -cyclobutanes.
Scheme 111: Intermediate generation of a cyclooctapentaene.
Scheme 112: Attempted preparation of a cyclodecahexaene.
Scheme 113: The thermal isomerization of 1,5,9-cyclododecatriyne (511) into [6]radialene (514).
Scheme 114: An isomerization involving a diketone derived from a conjugated bisallene.
Scheme 115: Typical reaction modes of heteroorganic bisallenes.
Scheme 116: Generation and thermal behavior of acyclic hetero-organic bisallenes.
Scheme 117: Generation of bis(propadienyl)thioether.
Scheme 118: The preparation of a bisallenic sulfone and its thermal isomerization.
Scheme 119: Bromination of the bisallenic sulfone 535.
Scheme 120: Metalation/hydrolysis of the bisallenic sulfone 535.
Scheme 121: Aromatic compounds from hetero bisallenes.
Scheme 122: Isomerization/cyclization of bispropargylic ethers.
Scheme 123: The preparation of novel aromatic systems by base-catalyzed isomerization of bispropargyl ethers.
Scheme 124: The isomerization of bisacetylenic thioethers to bicyclic thiophenes.
Scheme 125: Aromatization of macrocyclic bispropargylic sulfides.
Scheme 126: Preparation of ansa-compounds from macrocyclic bispropargyl thioethers.
Scheme 127: Alternate route for cyclization of a heterorganic bisallene.
Scheme 128: Multiple isomerization/cyclization of “double” bispropargylic thioethers.
Scheme 129: Preparation of a bisallenyl disulfide and its subsequent bicyclization.
Scheme 130: Thermal cyclization of a bisallenyl thiosulfonate.
Scheme 131: Some reactions of heteroorganic bisallenes with two sulfur atoms.
Scheme 132: Further methods for the preparation of heteroorganic bisallenes.
Scheme 133: Cyclization reactions of heteroorganic bisallenes.
Scheme 134: Thermal cycloadditions of bisallenic tertiary amines.
Scheme 135: Cyclization of a bisallenic tertiary amine in the presence of a transition-metal catalyst.
Scheme 136: A Pauson–Khand reaction of a bisallenic ether.
Scheme 137: Formation of a 2:1adduct from two allenic substrates.
Scheme 138: A ring-forming silastannylation of a bisallenic tertiary amine.
Scheme 139: A three-component cyclization involving a heterorganic bisallene.
Scheme 140: Atom-economic construction of a complex organic framework from a heterorganic α,ω-bisallene.
Beilstein J. Org. Chem. 2012, 8, 1644–1651, doi:10.3762/bjoc.8.188
Graphical Abstract
Figure 1: Space-filling model of the most stable complex between γ-CD and C60 with 1:2 stoichiometry, calcula...
Scheme 1: Chemical structures of γ-CD and γ-CD thioether 1–7 used to solubilize C60 in water.
Figure 2: UV–vis spectra of (a) C60 solution in THF, (b) aqueous solutions of C60 with 6 mM γ-CD thioether 5 ...
Figure 3: Isothermal kinetics of the dissolution of C60 in the presence of 10 mM CD 7 in water. Curve: best f...
Scheme 2: Mechanistic description of the two possible mechanisms for the complexation of C60 (G) by CD hosts,...
Figure 4: Phase-solubility diagram of C60 in aqueous solution in the presence of CD 3.
Figure 5: UV–vis spectra of the water solution of C60 produced by stirring C60 in 6mM γ-CD solution in DMF/to...
Figure 6: Size distribution of the molecular solution of C60 with 6 mM CD 5 in water at 25.0 °C: before centr...
Figure 7: Size distributions of the aqueous C60 dispersions after filtration, produced by stirring C60 in 6mM...
Beilstein J. Org. Chem. 2012, 8, 1071–1090, doi:10.3762/bjoc.8.119
Graphical Abstract
Figure 1: Photoisomerization process of azobenzene.
Figure 2: Representative example of an UV spectrum of an azocompound of the azobenzene type (blue line: trans...
Figure 3: Mechanistic proposals for the isomerization of azobenzenes.
Figure 4: Representation of the photocontrol of a K+ channel in the cellular membrane based on the isomerizat...
Figure 5: (a) MAG interaction with iGluR; (b) photocontrol of the opening of the ion channel by trans–cis iso...
Figure 6: Photocontrol of the structure of the α-helix in the polypeptide azoderivative 2. Reprinted (adapted...
Figure 7: Recognition of a guanidinium ion by a cis,cis-bis-azo derivative 3.
Figure 8: Recognition of cesium ions by cis-azo derivative 4.
Figure 9: Photocontrolled formation of an inclusion complex of cyclodextrin trans-azo 5+6.
Figure 10: Pseudorotaxane-based molecular machine.
Figure 11: Molecular hinge. Reprinted (adapted) with permission from Org. Lett. 2004, 6, 2595–2598. Copyright ...
Figure 12: Molecular threader. Reprinted (adapted) with permission from Acc. Chem. Res. 2001, 34, 445–455. Cop...
Figure 13: Molecular scissors based on azobenzene 12. Reprinted (adapted) with permission from J. Am. Chem. So...
Figure 14: Molecular pedals. Reprinted by permission from Macmillan Publishers Ltd: Nature, 2006, 440, 512–515...
Figure 15: Design of nanovehicles based on azo structures. Reprinted (adapted) with permission from Org. Lett. ...
Figure 16: Light-activated mesostructured silica nanoparticles (LAMs).
Figure 17: Molecular lift.
Figure 18: Conformational considerations in mono-ortho-substituted azobenzenes.
Scheme 1: Synthesis and photoisomerization of sulfinyl azobenzenes. Reprinted (adapted) with permission from ...
Figure 19: Photoisomerization of azocompound 22 and its application as a photobase catalyst.
Figure 20: Effect of irradiation with linearly polarized light on azo-LCEs. Reprinted by permission from Macmi...
Figure 21: Chemically and photochemically triggered memory switching cycle of the [2]rotaxane 25.
Figure 22: Unidirectional photoisomerization process of the azobenzene 26.
Beilstein J. Org. Chem. 2012, 8, 951–957, doi:10.3762/bjoc.8.107
Graphical Abstract
Figure 1: First (2) and second (3) generation of dendrimers based on chiral C2-symmetric pyrrolidine 1 and ha...
Scheme 1: Use of the key intermediate (3S,4S)-1-benzyl-3,4-dihydroxypyrrolidine (6) [31] for the synthesis of pyr...
Scheme 2: Synthesis of calixarene-based dendrimers 2 and 3. Reagents and conditions: DIPEA, CH2Cl2, 30 °C, 5 ...
Figure 2: Expansion (about 7 to 3 ppm) of the 1H NMR spectra of (A) the free ligand 2, (B) the sodium picrate...
Figure 3: Schematic of the inclusion of alkali-metal ions (sodium and potassium) in the polar cavity defined ...
Beilstein J. Org. Chem. 2012, 8, 371–378, doi:10.3762/bjoc.8.40
Graphical Abstract
Scheme 1: Diketonato metallomesogens and diketones with mesomorphic properties.
Scheme 2: Malonates and cyanoacetates tethered to calamitic 4-cyanobiphenyl units.
Scheme 3: Synthesis of malonate and cyanoacetates tethered to 4-cyano-biphenyl moieties.
Figure 1: DSC traces of 13a (heating/cooling rate 5 K/min).
Figure 2: DSC traces of 11a (heating/cooling rate 10 K/min).
Figure 3: Schlieren textures of 11a and 11b under crossed polarizers, upon cooling (cooling rate 5 K/min) fro...
Figure 4: Schlieren textures of 13a and 13b under crossed polarizers upon cooling (cooling rate 5 K/min) from...
Figure 5: 2D X-ray scattering patterns of 11a: (A) crystalline phase at 50 °C, (B) isotropic phase at 25 °C, ...
Beilstein J. Org. Chem. 2012, 8, 201–226, doi:10.3762/bjoc.8.22
Graphical Abstract
Figure 1: Calixarenes and expanded calixarenes: p-tert-Butylcalix[4]arene (1), p-tert-butyldihomooxacalix[4]a...
Figure 2: Conventional nomenclature for oxacalix[n]arenes.
Scheme 1: Synthesis of oxacalix[3]arenes: (i) Formaldehyde (37% aq), NaOH (aq), 1,4-dioxane; glacial acetic a...
Figure 3: p-tert-Butyloctahomotetraoxacalix[4]arene (4a) [16].
Figure 4: X-ray crystal structure of 3a showing phenolic hydrogen bonding (IUCr ID AS0508) [17].
Scheme 2: Stepwise synthesis of asymmetric oxacalix[3]arenes: (i) MOMCl, Adogen®464; (ii) 2,2-dimethoxypropan...
Figure 5: X-ray crystal structure of heptahomotetraoxacalix[3]arene 5 (CCDC ID 166088) [21].
Scheme 3: Oxacalix[3]arene synthesis by reductive coupling: (i) Me3SiOTf, Et3SiH, CH2Cl2; R1, R2 = I, Br, ben...
Scheme 4: Oxacalix[3]naphthalene: (i) HClO4 (aq), wet CHCl3 (R = tert-butyl, 6a, H, 6b) [20].
Figure 6: Conformers of 3a.
Scheme 5: Origin of the 25:75 cone:partial-cone statistical distribution of O-substituted oxacalix[3]arenes (p...
Scheme 6: Synthesis of alkyl ethers 7–10: (i) Alkyl halide, NaH, DMF [24].
Scheme 7: Synthesis of a pyridyl derivative 11a: (i) Picolyl chloride hydrochloride, NaH, DMF [26,27].
Figure 7: X-ray crystal structure of partial-cone 11a (CCDC ID 150580) [26].
Scheme 8: Lower-rim ethyl ester synthesis: (i) Ethyl bromoacetate, NaH, t-BuOK or alkali metal carbonate, THF...
Scheme 9: Forming chiral receptor 13: (i) Ethyl bromoacetate, NaH, THF; (ii) NaOH, H2O/1,4-dioxane; (iii) S-P...
Figure 8: X-ray crystal structure of 16 (IUCr ID PA1110) [32].
Scheme 10: Lower rim N,N-diethylamide 17a: (i) N,N-Diethylchloroacetamide, NaH, t-BuOK or alkali metal carbona...
Scheme 11: Capping the lower rim: (i) N,N-Diethylchloroacetamide, NaH, THF; (ii) NaOH, H2O/1,4-dioxane; (iii) ...
Figure 9: X-ray crystal structure of 18 (CCDC ID 142599) [33].
Scheme 12: Extending the lower rim: (i) Glycine methyl ester, HOBt, dicyclohexycarbodiimide (DCC), CH2Cl2; (ii...
Scheme 13: Synthesis of N-hydroxypyrazinone derivative 23: (i) 1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide...
Scheme 14: Synthesis of 24: (i) 1-Adamantyl bromomethyl ketone, NaH, THF [39].
Scheme 15: Synthesis of 25 and 26: (i) (Diphenylphosphino)methyl tosylate, NaH, toluene; (ii) phenylsilane, to...
Figure 10: X-ray crystal structure of 27 in the partial-cone conformer (CCDC ID SUP 90399) [41].
Scheme 16: Synthesis of strapped oxacalix[3]arene derivatives 28 and 29: (i) N,N’-Bis(chloroacetyl)-1,2-ethyle...
Figure 11: A chiral oxacalix[3]arene [45].
Figure 12: X-ray crystal structure of asymmetric oxacalix[3]arene 30 incorporating t-Bu, iPr and Et groups (CC...
Scheme 17: Reactions of an oxacalix[3]arene incorporating an upper-rim Br atom with (i) Pd(OAc)2, PPh3, HCO2H,...
Scheme 18: Synthesis of acid 39: (i) NaOH, EtOH/H2O, HCl (aq) [47].
Figure 13: Two forms of dimeric oxacalix[3]arene 40 [47].
Scheme 19: Capping the upper rim: (i) t-BuLi, THF, −78 °C; (ii) NaBH4, THF/EtOH; (iii) 1,3,5-tris(bromomethyl)...
Figure 14: Oxacalix[3]arene capsules 46 and 47 formed through coordination chemistry [52,53].
Figure 15: X-ray crystal structure of the 3b-vanadyl complex (CCDC ID 240185) [57].
Scheme 20: Effect of Ti(IV)/SiO2 on 3a: (i) Ti(OiPr)4, toluene; (ii) triphenylsilanol, toluene; (iii) partiall...
Figure 16: X-ray crystal structures of oxacalix[3]arene complexes with rhenium: 3b∙Re(CO)3 (CCDC ID 620981, le...
Figure 17: X-ray crystal structure of the La2·3a2 complex (CSD ID TIXXUT) [60].
Figure 18: X-ray crystal structures of [3a∙UO2]− with a cavity-bound cation (CCDC ID 135575, left) and without...
Figure 19: X-ray crystal structure of a supramolecule comprising two [3g·UO2]− complexes that encapsulate a di...
Figure 20: X-ray crystal structure of oxacalix[3]arene 49 capable of chiral selectivity (CSD ID HIGMUF) [65].
Figure 21: The structure of derivative 50 incorporating a Reichardt dye [66].
Figure 22: Phosphorylated oxacalix[3]arene complexes with transition metals: (Left to right) 26∙Au, 26∙Mo(CO)3...
Figure 23: X-ray crystal structure of [17a·HgCl2]2 (CCDC ID 168653) [69].
Figure 24: X-ray crystal structures of 3f with C60 (CCDC ID 182801, left) [76] and a 1,4-bis(9-fluorenyl) C60 deri...
Figure 25: X-Ray crystal structure of 3i and 6a encapsulating C60 (CCDC ID 102473 and 166077) [23,79].
Figure 26: A C60 complexing cationic oxacalix[3]arene 51 [81].
Figure 27: An oxacalix[3]arene-C60 self-associating system 53 [87].
Scheme 21: Synthesis of fluorescent pyrene derivative 55: (i) Propargyl bromide, acetone; (ii) CuI, 1-azidomet...
Scheme 22: Synthesis of responsive rhodamine derivative 57: (i) DCC, CH2Cl2 [91].
Scheme 23: Synthesis of nitrobenzyl derivative 58: (i) 1-Bromo-4-nitrobenzyl acetate, K2CO3, refluxing acetone...
Figure 28: X-ray crystal structure of [Na2∙17a](PF6)2 (CCDC ID 116656) [97].
Beilstein J. Org. Chem. 2012, 8, 25–49, doi:10.3762/bjoc.8.4
Graphical Abstract
Figure 1: Schematic representation of organic D-π-A system featuring ICT.
Figure 2: Two principal orientations of the imidazole-derived charge-transfer chromophores.
Scheme 1: Common synthetic approach to triarylimidazole-, diimidazole-, and benzimidazole-derived CT chromoph...
Scheme 2: Syntheses of important 4,5-dicyanoimidazole derivatives 1–3 [27-30].
Figure 3: Donor–acceptor triaryl push–pull azoles 4a–h [31,32].
Figure 4: Y-shaped CT chromophores with an extended π-conjugated pathway and various donor and acceptor subst...
Figure 5: Molecular structures of chromophores 9–14 [13,15,37-41].
Figure 6: General structure of 4,5-bis(4-aminophenyl)imidazole-derived chromophores 15a–g with various π-link...
Figure 7: Various orientations of the substituents on the parent lophine π-conjugated backbone (16–19) and th...
Figure 8: Structure and electronic absorption spectra of chromophores 21–26 [12].
Figure 9: Typical D-π-A diimidazole CT chromophore [16-18,50-53].
Figure 10: Typical D-π-D diimidazoles 28–31 [19,54-56] and photochromic diimidazoles 32,33 [57,58].
Scheme 3: Oxidation of 1H-diimidazoles to 2H-diimidazoles (quinoids).
Figure 11: Typical benzimidazoles-derived D-π-A push–pull systems 35–43 [25,62-66].
Figure 12: Structure of benzimidazoles (44–47), imidazophenanthrolines (48–57), imidazophenanthrenes (58–60), ...
Scheme 4: Acidoswitchable NLO-phores 64,65 and ESIPT mechanism [72-74].
Figure 13: General structures of bis(benzimidazole) chromophores 67–71 and pyridinium betaines 72 [75-79].
Figure 14: Overview of 4,5-dicyanoimidazole derivatives investigated by Rasmussen et al. [29,81-94].
Figure 15: 4,5-Dicyanoimidazole-derived chromophores 84–87 [103-106].
Figure 16: Push–pull chromophores 88–93 with systematically extended π-linker [30].
Figure 17: pH-triggered NLO switches 88c–93c [109].
Figure 18: Dibromoolefin 94 and branched chromophores 95–100 [112,113].
Figure 19: Imidazole as a donor–acceptor unit in CT-chromophores 101–111 [20].
Figure 20: Diimidazoles 112–115 used as small electron acceptors in organic solar cells [115,116].
Figure 21: Amino- and hydroxy-functionalized chromophores incorporated into a polymer backbone Rpol [18,50-53,122-124].
Figure 22: Structure of polyphosphazene polymers bearing NLO-phores [125-127] and some other recent examples of nonline...
Figure 23: Epoxy- and silica-based polymers functionalized with 4,5-dicyanoimidazole unit [105,130].
Beilstein J. Org. Chem. 2010, 6, 1070–1078, doi:10.3762/bjoc.6.122
Graphical Abstract
Scheme 1: Structure of the quarterthiophene derivative T1.
Scheme 2: Synthetic route to T1. Reagent and conditions: a) Boc anhydride, CH2Cl2, 6 h, 0 °C–rt, 97%; b) NBS,...
Figure 1: AFM height images of a film spin-coated from diluted gel solution of T1 in MCH (2 × 10−3 M) onto HO...
Figure 2: a) UV-vis spectra of T1 in chloroform (dashed line) and n-heptane (solid line); b) UV-vis spectra o...
Scheme 3: Proposed mode of self-assembly of T1.
Figure 3: UV-vis spectra of T1 (concentration 5 x 10−5 M) in cyclohexane (solid line) and 2.4% MeOH in cycloh...
Figure 4: AFM height images (A and B) of a film spin-coated from MCH solution (concentration 5 x 10−4 M) of a...
Figure 5: Variation of dose-normalized conductivity transients (Δσ/D) with time for T1.
Beilstein J. Org. Chem. 2010, 6, No. 32, doi:10.3762/bjoc.6.32
Graphical Abstract
Figure 1: Biologically important amines and quaternary ammonium salts: histamine (1), dopamine (2) and acetyl...
Figure 2: Crown ether 18-crown-6.
Figure 3: Conformations of 18-crown-6 (4) in solvents of different polarity.
Figure 4: Binding topologies of the ammonium ion depending on the crown ring size.
Figure 5: A “pseudorotaxane” structure consisting of 24-crown-8 and a secondary ammonium ion (5); R = Ph.
Figure 6: Typical examples of azacrown ethers, cryptands and related aza macrocycles.
Figure 7: Binding of ammonium to azacrown ethers and cryptands [111-113].
Figure 8: A 19-crown-6-ether with decalino blocking groups (11) and a thiazole-dibenzo-18-crown-6-ether (12).
Figure 9: 1,3-Bis(6-oxopyridazin-1-yl)propane derivatives 13 and 14 by Campayo et al.
Figure 10: Fluorescent azacrown-PET-sensors based on coumarin.
Figure 11: Two different pyridino-cryptands (17 and 18) compared to a pyridino-crown (19); chiral ammonium ion...
Figure 12: Pyridino-18-crown-6 ligand (21), a similar acridino-18-crown-6 ligand (22) and a structurally relat...
Figure 13: Ciral pyridine-azacrown ether receptors 24.
Figure 14: Chiral 15-crown-5 receptors 26 and an analogue 18-crown-6 ligand 27 derived from amino alcohols.
Figure 15: C2-symmetric chiral 18-crown-6 amino alcohol derivatives 28 and related macrocycles.
Figure 16: Macrocycles with diamide-diester groups (30).
Figure 17: C2-symmetric chiral aza-18-crown-6 ethers (31) with phenethylamine residues.
Figure 18: Chiral C-pivot p-methoxy-phenoxy-lariat ethers.
Figure 19: Chiral lariat crown ether 34.
Figure 20: Sucrose-based chiral crown ether receptors 36.
Figure 21: Permethylated fructooligosaccharide 37 showing induced-fit chiral recognition.
Figure 22: Biphenanthryl-18-crown-6 derivative 38.
Figure 23: Chiral lariat crown ethers derived from binol by Fuji et al.
Figure 24: Chiral phenolic crown ether 41 with “aryl chiral barriers” and guest amines.
Figure 25: Chiral bis-crown receptor 43 with a meso-ternaphthalene backbone.
Figure 26: Chromogenic pH-dependent bis-crown chemosensor 44 for diamines.
Figure 27: Triamine guests for binding to receptor 44.
Figure 28: Chiral bis-crown phenolphthalein chemosensors 46.
Figure 29: Crown ether amino acid 47.
Figure 30: Luminescent receptor 48 for bis-alkylammonium guests.
Figure 31: Luminescent CEAA (49a), a bis-CEAA receptor for amino acids (49b) and the structure of lysine bindi...
Figure 32: Luminescent CEAA tripeptide for binding small peptides.
Figure 33: Bis crown ether 51a self assembles co-operatively with C60-ammonium ion 51b.
Figure 34: Triptycene-based macrotricyclic dibenzo-[24]-crown-8 ether host 52 and guests.
Figure 35: Copper imido diacetic acid azacrown receptor 53a and the suggested His-Lys binding motif; a copper ...
Figure 36: Urea (54) and thiourea (55) benzo crown receptor for transport and extraction of amino acids.
Figure 37: Crown pyryliums ion receptors 56 for amino acids.
Figure 38: Ditopic sulfonamide bridged crown ether receptor 57.
Figure 39: Luminescent peptide receptor 58.
Figure 40: Luminescent receptor 59 for the detection of D-glucosamine hydrochloride in water/ethanol and lumin...
Figure 41: Guanidinium azacrown receptor 61 for simple amino acids and ditopic receptor 62 with crown ether an...
Figure 42: Chiral bicyclic guanidinium azacrown receptor 63 and similar receptor 64 for the enantioselective t...
Figure 43: Receptors for zwitterionic species based on luminescent CEAAs.
Figure 44: 1,10-Azacrown ethers with sugar podand arms and the anticancer agent busulfan.
Figure 45: Benzo-18-crown-6 modified β-cyclodextrin 69 and β-cyclodextrin functionalized with diaza-18-crown-6...
Figure 46: Receptors for colorimetric detection of primary and secondary ammonium ions.
Figure 47: Porphyrine-crown-receptors 72.
Figure 48: Porphyrin-crown ether conjugate 73 and fullerene-ammonium ion guest 74.
Figure 49: Calix[4]arene (75a), homooxocalix[4]arene (75b) and resorcin[4]arene (75c) compared (R = H, alkyl c...
Figure 50: Calix[4]arene and ammonium ion guest (R = H, alkyl, OAcyl etc.), possible binding sites; A: co-ordi...
Figure 51: Typical guests for studies with calixarenes and related molecules.
Figure 52: Lower rim modified p-tert-butylcalix[5]arenes 82.
Figure 53: The first example of a water soluble calixarene.
Figure 54: Sulfonated water soluble calix[n]arenes that bind ammonium ions.
Figure 55: Displacement assay for acetylcholine (3) with a sulfonato-calix[6]arene (84b).
Figure 56: Amino acid inclusion in p-sulfonatocalix[4]arene (84a).
Figure 57: Calixarene receptor family 86 with upper and lower rim functionalization.
Figure 58: Calix[6]arenes 87 with one carboxylic acid functionality.
Figure 59: Sulfonated calix[n]arenes with mono-substitution at the lower rim systematically studied on their r...
Figure 60: Cyclotetrachromotropylene host (91) and its binding to lysine (81c).
Figure 61: Calixarenes 92 and 93 with phosphonic acids groups.
Figure 62: Calix[4]arene tetraphosphonic acid (94a) and a double bridged analogue (94b).
Figure 63: Calix[4]arene tetraphosphonic acid ester (92c) for surface recognition experiments.
Figure 64: Calixarene receptors 95 with α-aminophosphonate groups.
Figure 65: A bridged homocalix[3]arene 95 and a distally bridged homocalix[4]crown 96.
Figure 66: Homocalix[3]arene ammonium ion receptor 97a and the Reichardt’s dye (97b) for colorimetric assays.
Figure 67: Chromogenic diazo-bridged calix[4]arene 98.
Figure 68: Calixarene receptor 99 by Huang et al.
Figure 69: Calixarenes 100 reported by Parisi et al.
Figure 70: Guest molecules for inclusion in calixarenes 100: DAP × 2 HCl (101a), APA (101b) and Lys-OMe × 2 HC...
Figure 71: Different N-linked peptido-calixarenes open and with glycol chain bridges.
Figure 72: (S)-1,1′-Bi-2-naphthol calixarene derivative 104 published by Kubo et al.
Figure 73: A chiral ammonium-ion receptor 105 based on the calix[4]arene skeleton.
Figure 74: R-/S-phenylalaninol functionalized calix[6]arenes 106a and 106b.
Figure 75: Capped homocalix[3]arene ammonium ion receptor 107.
Figure 76: Two C3 symmetric capped calix[6]arenes 108 and 109.
Figure 77: Phosphorous-containing rigidified calix[6]arene 110.
Figure 78: Calix[6]azacryptand 111.
Figure 79: Further substituted calix[6]azacryptands 112.
Figure 80: Resorcin[4]arene (75c) and the cavitands (113).
Figure 81: Tetrasulfonatomethylcalix[4]resorcinarene (114).
Figure 82: Resorcin[4]arenes (115a/b) and pyrogallo[4]arenes (115c, 116).
Figure 83: Displacement assay for acetylcholine (3) with tetracyanoresorcin[4]arene (117).
Figure 84: Tetramethoxy resorcinarene mono-crown-5 (118).
Figure 85: Components of a resorcinarene based displacement assay for ammonium ions.
Figure 86: Chiral basket resorcin[4]arenas 121.
Figure 87: Resorcinarenes with deeper cavitand structure (122).
Figure 88: Resorcinarene with partially open deeper cavitand structure (123).
Figure 89: Water-stabilized deep cavitands with partially structure (124, 125).
Figure 90: Charged cavitands 126 for tetralkylammonium ions.
Figure 91: Ditopic calix[4]arene receptor 127 capped with glycol chains.
Figure 92: A calix[5]arene dimer for diammonium salt recognition.
Figure 93: Calixarene parts 92c and 129 for the formation molecular capsules.
Figure 94: Encapsulation of a quaternary ammonium cation by two resorcin[4]arene molecules (NMe4+@[75c]2 × Cl−...
Figure 95: Encapsulation of a quaternary ammonium cation by six resorcin[4]arene molecules (NMe3D+@[130]6 × Cl−...
Figure 96: Structure and schematic of cucurbit[6]uril (CB[6], 131a).
Figure 97: Cyclohexanocucurbit[6]uril (CB′[6], 132) and the guest molecule spermine (133).
Figure 98: α,α,δ,δ-Tetramethylcucurbit[6]uril (134).
Figure 99: Structure of the cucurbituril-phthalhydrazide analogue 135.
Figure 100: Organic cavities for the displacement assay for amine differentiation.
Figure 101: Displacement assay methodology for diammonium- and related guests involving cucurbiturils and some ...
Figure 102: Nor-seco-Cucurbituril (±)-bis-ns-CB[6] (140) and guest molecules.
Figure 103: The cucurbit[6]uril based complexes 141 for chiral discrimination.
Figure 104: Cucurbit[7]uril (131c) and its ferrocene guests (142) opposed.
Figure 105: Cucurbit[7]uril (131c) guest inclusion and representative guests.
Figure 106: Cucurbit[7]uril (131c) binding to succinylcholine (145) and different bis-ammonium and bis-phosphon...
Figure 107: Paraquat-cucurbit[8]uril complex 149.
Figure 108: Gluconuril-based ammonium receptors 150.
Figure 109: Examples of clefts (151a), tweezers (151b, 151c, 151d) and clips (151e).
Figure 110: Kemp’s triacid (152a), on example of Rebek’s receptors (152b) and guests.
Figure 111: Amino acid receptor (154) by Rebek et al.
Figure 112: Hexagonal lattice designed hosts by Bell et al.
Figure 113: Bell’s amidinium receptor (156) and the amidinium ion (157).
Figure 114: Aromatic phosphonic acids.
Figure 115: Xylene phosphonates 159 and 160a/b for recognition of amines and amino alcohols.
Figure 116: Bisphosphonate recognition motif 161 for a colorimetric assay with alizarin complexone (163) for ca...
Figure 117: Bisphosphonate/phosphate clip 164 and bisphosphonate cleft 165.
Figure 118: N-Methylpyrazine 166a, N-methylnicotinamide iodide (166b) and NAD+ (166c).
Figure 119: Bisphosphate cavitands.
Figure 120: Bisphosphonate 167 of Schrader and Finocchiaro.
Figure 121: Tweezer 168 for noradrenaline (80b).
Figure 122: Different tripods and heparin (170).
Figure 123: Squaramide based receptors 172.
Figure 124: Cage like NH4+ receptor 173 of Kim et al.
Figure 125: Ammonium receptors 174 of Chin et al.
Figure 126: 2-Oxazolin-based ammonium receptors 175a–d and 176 by Ahn et al.
Figure 127: Racemic guest molecules 177.
Figure 128: Tripods based on a imidazole containing macrocycle (178) and the guest molecules employed in the st...
Figure 129: Ammonium ion receptor 180.
Figure 130: Tetraoxa[3.3.3.3]paracyclophanes 181 and a cyclophanic tetraester (182).
Figure 131: Peptidic bridged paraquat-cyclophane.
Figure 132: Shape-selective noradrenaline host.
Figure 133: Receptor 185 for binding of noradrenaline on surface layers from Schrader et al.
Figure 134: Tetraphosphonate receptor for binding of noradrenaline.
Figure 135: Tetraphosphonate 187 of Schrader and Finocchiaro.
Figure 136: Zinc-Porphyrin ammonium-ion receptors 188 and 189 of Mizutani et al.
Figure 137: Zinc porphyrin receptor 190.
Figure 138: Zinc porphyrin receptors 191 capable of amino acid binding.
Figure 139: Zinc-porphyrins with amino acid side chains for stereoinduction.
Figure 140: Bis-zinc-bis-porphyrin based on Tröger’s base 193.
Figure 141: BINAP-zinc-prophyrin derivative 194 and it’s guests.
Figure 142: Bisaryl-linked-zinc-porphyrin receptors.
Figure 143: Bis-zinc-porphyrin 199 for diamine recognition and guests.
Figure 144: Bis-zinc-porphyrin crown ether 201.
Figure 145: Bis-zinc-porphyrin 202 for stereodiscrimination (L = large substituent; S = small substituent).
Figure 146: Bis-zinc-porphyrin[3]rotaxane and its copper complex and guests.
Figure 147: Dien-bipyridyl ligand 206 for co-ordination of two metal atoms.
Figure 148: The ligand and corresponding tetradentate co-complex 207 serving as enantioselective receptor for a...
Figure 149: Bis(oxazoline)–copper(II) complex 208 for the recognition of amino acids in aqueous solution.
Figure 150: Zinc-salen-complexes 209 for the recognition tertiary amines.
Figure 151: Bis(oxazoline)–copper(II) 211 for the recognition of amino acids in aqueous solution.
Figure 152: Zn(II)-complex of a C2 terpyridine crown ether.
Figure 153: Displacement assay and receptor for aspartate over glutamate.
Figure 154: Chiral complex 214 for a colorimetric displacement assay for amino acids.
Figure 155: Metal complex receptor 215 with tripeptide side arms.
Figure 156: A sandwich complex 216 and its displaceable dye 217.
Figure 157: Lanthanide complexes 218–220 for amino acid recognition.
Figure 158: Nonactin (221), valinomycin (222) and vancomycin (223).
Figure 159: Monesin (224a) and a chiral analogue for enantiodiscrimination of ammonium guests (224b).
Figure 160: Chiral podands (226) compared to pentaglyme-dimethylether (225) and 18-crown-6 (4).
Figure 161: Lasalocid A (228).
Figure 162: Lasalocid derivatives (230) of Sessler et al.
Figure 163: The Coporphyrin I tetraanion (231).
Figure 164: Linear and cyclic peptides for ammonium ion recognition.
Figure 165: Cyclic and bicyclic depsipeptides for ammonium ion recognition.
Figure 166: α-Cyclodextrin (136a) and novocaine (236).
Figure 167: Helical diol receptor 237 by Reetz and Sostmann.
Figure 168: Ammonium binding spherand by Cram et al. (238a) and the cyclic[6]metaphenylacetylene 238b in compar...
Figure 169: Receptor for peptide backbone and ammonium binding (239).
Figure 170: Anion sensor principle with 3-hydroxy-2-naphthanilide of Jiang et al.
Figure 171: 7-bromo-3-hydroxy-N-(2-hydroxyphenyl)naphthalene 2-carboxamide (241) and its amine binding.
Figure 172: Naturally occurring catechins with affinity to quaternary ammonium ions.
Figure 173: Spiropyran (244) and merocyanine form (244a) of the amino acid receptors of Fuji et al.
Figure 174: Coumarin aldehyde (245) and its iminium species with amino acid bound (245a) by Glass et al.
Figure 175: Coumarin aldehyde appended with boronic acid.
Figure 176: Quinolone aldehyde dimers by Glass et al.
Figure 177: Chromogenic ammonium ion receptors with trifluoroacetophenone recognition motifs.
Figure 178: Chromogenic ammonium ion receptor with trifluoroacetophenone recognition motif bound on different m...