Search results

Search for "phenanthroline" in Full Text gives 108 result(s) in Beilstein Journal of Organic Chemistry.

Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source

  • Tetsuaki Fujihara and
  • Yasushi Tsuji

Beilstein J. Org. Chem. 2018, 14, 2435–2460, doi:10.3762/bjoc.14.221

Graphical Abstract
  • -phenanthroline) and Mn powder (3.0 equiv) in N,N-dimethylacetamide (DMA) under an atmospheric pressure of CO2 at room temperature (Scheme 1). Under optimized reaction conditions, the carboxylated product 2a-Me was obtained in 83% yield after derivatization to the corresponding methyl ester. In the absence of the
  • -phenanthroline) as the catalyst, 4a-Me was obtained in 86% yield after esterification. Other bidentate ligands such as bpy, phen, and dppe were not suitable for this reaction. Control experiments revealed that both the Co catalyst and the Mn reductant were indispensable to the reaction. The carboxylation of
PDF
Album
Review
Published 19 Sep 2018

Tetrathiafulvalene – a redox-switchable building block to control motion in mechanically interlocked molecules

  • Hendrik V. Schröder and
  • Christoph A. Schalley

Beilstein J. Org. Chem. 2018, 14, 2163–2185, doi:10.3762/bjoc.14.190

Graphical Abstract
  • similar. The motion which can be controlled by external stimuli is the rotation (or circumrotation) of the wheels relative to each other. The first TTF-based catenane 25 was described by the groups of Becher and Sauvage in 1994 (Figure 23) [100]. Starting from a phenanthroline macrocycle bearing a TTF
PDF
Album
Review
Published 20 Aug 2018

Revisiting ring-degenerate rearrangements of 1-substituted-4-imino-1,2,3-triazoles

  • James T. Fletcher,
  • Matthew D. Hanson,
  • Joseph A. Christensen and
  • Eric M. Villa

Beilstein J. Org. Chem. 2018, 14, 2098–2105, doi:10.3762/bjoc.14.184

Graphical Abstract
  • ][14][15][16][17], quinoline [18][19], pyridazine [20][21], phthalazine [22], benzimidazole [23], phenanthroline [24], bipyridine [25] and amine [26] subunits. The utility of such chelators in constructing coordination compounds has been demonstrated for a wide range of transition metal and lanthanide
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2018

Cationic cobalt-catalyzed [1,3]-rearrangement of N-alkoxycarbonyloxyanilines

  • Itaru Nakamura,
  • Mao Owada,
  • Takeru Jo and
  • Masahiro Terada

Beilstein J. Org. Chem. 2018, 14, 1972–1979, doi:10.3762/bjoc.14.172

Graphical Abstract
  • 2-aminophenol derivative 2a (Table 1, entries 3 and 4). Moreover, a cationic copper catalyst generated from CuCl2 and two equivalents of AgSbF6 was effective to afford 2a in good yield (Table 1, entry 5), even at 30 °C (Table 1, entry 8). The use of a ligand, such as 1,10-phenanthroline (phen) and
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2018

Efficient catenane synthesis by cucurbit[6]uril-mediated azide–alkyne cycloaddition

  • Antony Wing Hung Ng,
  • Chi-Chung Yee,
  • Kai Wang and
  • Ho Yu Au-Yeung

Beilstein J. Org. Chem. 2018, 14, 1846–1853, doi:10.3762/bjoc.14.158

Graphical Abstract
  • a preliminary study of a [6]catenane synthesis featuring the CB[6]-mediated azide–alkyne cycloaddition (CBAAC) using phenanthroline-based building blocks [24]. To further explore the applicability and generality of the CBAAC in the construction of mechanically interlocked molecules, we report here
  • other topological isomers. The building blocks contain either a central hexaethylene glycol (HEG) unit or are derived from 1,5-dioxynaphthalene (DN), naphthalenediimide (NDI), 2,9-phenanthroline (Phen) or 4,4’-biphenyl (BP) cores which can engage in additional non-covalent interactions, such as metal
  • ). Together with our previous demonstration of the compatibility of CBAAC with Cu+-phenanthroline coordination in a [6]catenane assembly, the successful synthesis of Cat-11 shows the feasibility of using CBAAC with a versatile selection of building blocks and non-covalent interactions to construct complex
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2018

Synthesis and photophysical studies of a multivalent photoreactive RuII-calix[4]arene complex bearing RGD-containing cyclopentapeptides

  • Sofia Kajouj,
  • Lionel Marcelis,
  • Alice Mattiuzzi,
  • Adrien Grassin,
  • Damien Dufour,
  • Pierre Van Antwerpen,
  • Didier Boturyn,
  • Eric Defrancq,
  • Mathieu Surin,
  • Julien De Winter,
  • Pascal Gerbaux,
  • Ivan Jabin and
  • Cécile Moucheron

Beilstein J. Org. Chem. 2018, 14, 1758–1768, doi:10.3762/bjoc.14.150

Graphical Abstract
  • in the IR spectrum of 4. Phenanthroline derivative 5 was synthesized from 5-glycinamido-1,10-phenanthroline in a two-step sequence consisting of a peptide-type coupling reaction with a Boc-protected glycine N-hydrosuccinimide ester followed by the deprotection of the amino group (see Supporting
  • Information File 1) [71]. Different coupling agents (DCC/HOBt, EDC·HCl/HOBt, PyBOP) and conditions were then tested for the peptide-type coupling reaction between calix[4]arene 4 and phenanthroline derivative 5. The use of an excess of 5 (2 equiv) in the presence of EDC·HCl and HOBt in DMF at room temperature
  • Information File 1. Calix[4]arenes 2 and 3 were synthesized from commercial p-tert-butylcalix[4]arene 1 according to procedures described in the literature [69]. The experimental procedures and characterization data for calixarene derivatives 4, 6, 7 and 9, phenanthroline derivative 5 and c-[RGDfK]-alkyne 8
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2018

β-Hydroxy sulfides and their syntheses

  • Mokgethwa B. Marakalala,
  • Edwin M. Mmutlane and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1668–1692, doi:10.3762/bjoc.14.143

Graphical Abstract
  • excellent catalyst for the thiolysis and selenolysis of meso-epoxides to give the corresponding β-hydroxy derivatives in good yields and high enantioselectivities, in dichloromethane as the solvent [47][48]. As an extension to this work, a novel chiral 2,9-disubstituted-1,10-phenanthroline 54 was prepared
PDF
Album
Review
Published 05 Jul 2018

Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis

  • Gwendal Grelier,
  • Benjamin Darses and
  • Philippe Dauban

Beilstein J. Org. Chem. 2018, 14, 1508–1528, doi:10.3762/bjoc.14.128

Graphical Abstract
  • reaction has been extended by using a combination of 10 mol % of Cu(OTf)2, 12 mol % of 1,10-phenanthroline, and 2 equivalents of potassium phosphate, as reported by the group of Jiang (Scheme 30) [70]. Six- to eight-membered sulfur heterocycles 67 can thus be isolated from cyclic diaryl-λ3-iodanes. More
  • . The same group has then developed a radical method to access the corresponding sulfones from cyclic diaryl-λ3-iodanes (Scheme 33) [73]. The reaction is catalyzed by a 1,10-phenanthroline-copper complex and affords the dibenzothiophene-5,5-dioxides 76 in moderate to high yields. The transformation has
  • corresponding cyclic diaryl-λ3-iodanes, utilizing potassium thioacetate as the sulfur source, in the presence of 10 mol % of Cu(OTf)2, and 12 mol % of 1,10-phenanthroline [70]. This transformation has been successfully applied to linear diaryl-λ3-iodanes (Scheme 39). Interestingly, symmetrical and non
PDF
Album
Review
Published 21 Jun 2018

[3 + 2]-Cycloaddition reaction of sydnones with alkynes

  • Veronika Hladíková,
  • Jiří Váňa and
  • Jiří Hanusek

Beilstein J. Org. Chem. 2018, 14, 1317–1348, doi:10.3762/bjoc.14.113

Graphical Abstract
  • this synthetic approach for the synthesis of polysubstituted 1,2-diazoles (pyrazoles, indazoles). However, until 2013 when Taran’s group introduced the regioselective Cu(I)-phenanthroline catalysis [3] this method was of limited value due to the harsh reaction conditions and sometimes also due to low
  • mechanism). Copper-catalyzed reaction of sydnones with terminal alkynes A substantial breakthrough in the field of 3-arylsydnone-terminal alkyne cycloaddition was achieved by Taran’s group in 2013 [3]. They developed a regioselective Cu(I)-phenanthroline-catalyzed variant of this reaction (i.e., copper
  • polymeric arrangement was observed [126]. From this observations it appears that mono- or dimeric three-coordinated trigonal planar Cu(I)-acetylide-phenanthroline complex should be the reactive species during CuSAC. This idea was supported by the fact that during the reaction of 4-bromosydnones with 4
PDF
Album
Review
Published 05 Jun 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
  • in situ intramolecular cyclization of 5-aminopyrazole-4-caroxylate 35 with β-haloaldehydes 36 via the corresponding imine derivative was carried out in presence of Pd(PPh3)2Cl2 (1.0 mol %), Cu2O (1.0 mol %), 1,10-phenanthroline (2.0 mol %), TBAI (6 mol %), by Batra et al. [50] to generate the
PDF
Album
Review
Published 25 Jan 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • diamine ligands such as 1,10-phenanthroline (phen) were discovered. These diamines were able to accelerate the second step to regenerate sufficient amounts of reusable complexes A utilizing copper(I)-diamine complexes (Scheme 1), thus accelerating the trifluoromethylation of aryl/heteroaryl iodides
PDF
Album
Review
Published 17 Jan 2018

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation and chlorination. Part 2: Use of CF3SO2Cl

  • Hélène Chachignon,
  • Hélène Guyon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2800–2818, doi:10.3762/bjoc.13.273

Graphical Abstract
  • tandem trifluoromethylation/cyclisation processes. Dolbier and co-workers first proposed the use of N-arylacrylamides 3 to access trifluoromethylated 3,3-disubstituted 2-oxindoles 4 under photocatalytic conditions (Scheme 4) [11]. In the presence of Ru(phen)3Cl2 (phen = phenanthroline), a variety of N
  • (PPh3)2 with Ru(phen)3Cl2 (phen: phenanthroline) at room temperature and adding a base, a variety of alkenes furnished the corresponding chlorotrifluoromethylated products under much milder conditions and with higher yields (Scheme 17). Moreover, tuning of the reaction conditions allowed to broaden the
  • -deficient alkenes [26]. Such compounds could nonetheless be converted into the corresponding chlorotrifluoromethylated products by replacing the Ru(II) catalyst by Cu(dap)2Cl (dap = 2,9-bis(p-anisyl)-1,10-phenanthroline) (Scheme 18). This change of reactivity can supposedly be attributed to the high
PDF
Album
Full Research Paper
Published 19 Dec 2017

Comparative profiling of well-defined copper reagents and precursors for the trifluoromethylation of aryl iodides

  • Peter T. Kaplan,
  • Jessica A. Lloyd,
  • Mason T. Chin and
  • David A. Vicic

Beilstein J. Org. Chem. 2017, 13, 2297–2303, doi:10.3762/bjoc.13.225

Graphical Abstract
  • [10][11]. [(SIMes)CuCF3] (1, SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene), which is in equilibrium with [(SIMes)2Cu][Cu(CF3)2] (2), can either be used directly or prepared in situ through the reaction of [(SIMes)Cu(O-t-Bu)] (3) with Me3SiCF3 (Scheme 2) [10]. Phenanthroline
  • complexes of copper B1 were reported shortly after the NHC counterparts [5][12] and have reached much success in chemical synthesis due to the ease of preparation and the low cost of the phenanthroline ancillary ligand. [(phen)CuCF3] can now be purchased commercially, or prepared in situ by a variety of
  • well-defined [LCuCF3] complex was employed directly or generated in situ by published reports. If so, it will be informative to know the extent of differences in reagent performance over time. Results and Discussion Because the phenanthroline-based system described as B1 (Scheme 1) is the most widely
PDF
Album
Full Research Paper
Published 30 Oct 2017

Preparation of imidazo[1,2-a]-N-heterocyclic derivatives with gem-difluorinated side chains

  • Layal Hariss,
  • Kamal Bou Hadir,
  • Mirvat El-Masri,
  • Thierry Roisnel,
  • René Grée and
  • Ali Hachem

Beilstein J. Org. Chem. 2017, 13, 2115–2121, doi:10.3762/bjoc.13.208

Graphical Abstract
  • I2 under an O2 atmosphere [29]. However, only a poor yield was obtained (20%, Scheme 3). Then, we found that Cu(OAc)2·H2O (10 mol %) and 1,10-phenanthroline (10 mol %) in chlorobenzene at 160 °C under an O2 atmosphere, following the conditions recently reported by Hajra et al. [25], gave 7a in 62
  • -aminopyridine (20 mg, 0.21 mmol, 1.2 equiv), enone 6a (51 mg, 0.17 mmol, 1 equiv), Cu(OAc)2·H2O (3.6 mg, 0.02 mmol, 10 mol %), and 1,10-phenanthroline (2.5 μL, 0.02 mmol, 10 mol %) in chlorobenzene (1 mL) was stirred in a reaction tube at 160 °C under an O2 atmosphere. After 25 h, 19F NMR monitoring indicated
  • [1,2-a]pyridin-3-yl)(phenyl)methanone (7a) A mixture of 2-aminopyridine (25 mg, 0.26 mmol, 2.5 equiv), alcohol 5a (30 mg, 0.10 mmol, 1 equiv), DBU (0.03 mL, 0.20 mmol, 2 equiv), Cu(OAc)2·H2O (2.1 mg, 0.01 mmol, 10 mol %), and 1,10-phenanthroline (1.4 μL, 0.01 mmol, 10 mol %) in chlorobenzene (1 mL) was
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2017

Oxidative dehydrogenation of C–C and C–N bonds: A convenient approach to access diverse (dihydro)heteroaromatic compounds

  • Santanu Hati,
  • Ulrike Holzgrabe and
  • Subhabrata Sen

Beilstein J. Org. Chem. 2017, 13, 1670–1692, doi:10.3762/bjoc.13.162

Graphical Abstract
  • -based catalysts are reported, that facilitates oxidative dehydrogenation of amines [72][73][74][75][76][77][78][79][80]. An exquisite example in this aspect involved phenanthroline-based catalysts that are applied for oxidative dehydrogenation of 2°-amines [81]. In this regard, Stahl and co-workers
  • showed that coordination of 1,10-phenanthroline-5,6-dione (phd) with Zn2+ salts enhances the catalytic capacity of phd towards oxidative dehydrogenation of a variety of nitrogen heterocycles (Scheme 17). Thorough investigation and isolation of Zn-phd complexes revealed that the coordination of Zn2+ with
  • MnO2. Selenium dioxide and potassium dichromate-mediated oxidative dehydrogenation of tetrahydro-β-carbolines [65][66]. Synthesis of substituted benzazoles in the presence of barium permanganate. Oxidative dehydrogenation with phenanthroline-based catalysts. PPTS = pyridinium p-toluenesulfonic acid
PDF
Album
Review
Published 15 Aug 2017

Nucleophilic and electrophilic cyclization of N-alkyne-substituted pyrrole derivatives: Synthesis of pyrrolopyrazinone, pyrrolotriazinone, and pyrrolooxazinone moieties

  • Işıl Yenice,
  • Sinan Basceken and
  • Metin Balci

Beilstein J. Org. Chem. 2017, 13, 825–834, doi:10.3762/bjoc.13.83

Graphical Abstract
  • N-alkyne-substituted pyrrole derivatives 7a–d. A practical method is the coupling reaction of substituted pyrroles with alkynyl bromides using catalytic CuSO4·5H2O and 1,10-phenanthroline [31]. When alkynylation with 11a was carried out at 85 °C, the conversion was only 12%. We assume this is due to
  • anhydrous toluene (20 mL), methyl 1H-pyrrole-2-carboxylate (9, 1.0 equiv), K3PO4 (2 equiv), CuSO4·5H2O (0.1 equiv) and 1,10-phenanthroline monohydrate (0.2 equiv) were added under N2 atmosphere. The reaction mixture was heated to 85 °C and stirred for 48 h. Then, the reaction mixture was cooled to room
  • ) in freshly distilled anhydrous toluene (20 mL), methyl 1H-pyrrole-2-carboxylate (9, 0.57 g, 4.56 mmol), K3PO4 (1.94 g, 9.12 mmol), CuSO4·5H2O (0.11 g, 0.46 mmol) and 1,10-phenanthroline monohydrate (0.18 g, 0.91 mmol) were added and the resulting mixture was reacted as described above to obtain 7c
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2017

Transition-metal-catalyzed synthesis of phenols and aryl thiols

  • Yajun Liu,
  • Shasha Liu and
  • Yan Xiao

Beilstein J. Org. Chem. 2017, 13, 589–611, doi:10.3762/bjoc.13.58

Graphical Abstract
  • -3-oxobutanamide (yield 65%), tetramethylethylenediamine (TMEDA, yield 84%), phenanthroline (yield 75%), 2,2,6,6-tetramethyl-3,5-heptanedione (TMHD, yield 95%) and dibenzoylmethane (L4, yield 97%) [27][28]. The reaction system afforded phenols from aryl halides and aryl bromides bearing electron
  • catalyzed thiolation of aryl halides have been extensively studied. In 2006, the Sawada group reported that aryl iodides could couple with thiobenzoic acid in the presence of a copper catalyst and 1,10-phenanthroline (L17), affording S-aryl thiocarboxylates in excellent yields [102]. The coupled product was
PDF
Album
Review
Published 23 Mar 2017

Bi- and trinuclear copper(I) complexes of 1,2,3-triazole-tethered NHC ligands: synthesis, structure, and catalytic properties

  • Shaojin Gu,
  • Jiehao Du,
  • Jingjing Huang,
  • Huan Xia,
  • Ling Yang,
  • Weilin Xu and
  • Chunxin Lu

Beilstein J. Org. Chem. 2016, 12, 863–873, doi:10.3762/bjoc.12.85

Graphical Abstract
  • [1][2][3][4][5][6][7][8][9][10][11][12]. A number of transition metal complexes of NHCs containing pyridine [13], pyrimidine [14], pyrazole [15][16], naphthyridine [17], pyridazine [18], and phenanthroline [19][20] donating groups have been studied in metal-catalyzed organic transformations. Recently
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2016

Recent advances in metathesis-derived polymers containing transition metals in the side chain

  • Ileana Dragutan,
  • Valerian Dragutan,
  • Bogdan C. Simionescu,
  • Albert Demonceau and
  • Helmut Fischer

Beilstein J. Org. Chem. 2015, 11, 2747–2762, doi:10.3762/bjoc.11.296

Graphical Abstract
  • norbornene-substituted phenanthroline, that were polymerized by ROMP (Grubbs 3rd generation catalyst) to yield copolymers with valuable photo- and electroluminescent properties [65]. This kind of hybrid structure may induce high performance in LED devices. Early transition metal-containing polymers In
PDF
Album
Review
Published 28 Dec 2015

Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

  • Tsuyuka Sugiishi,
  • Hideki Amii,
  • Kohsuke Aikawa and
  • Koichi Mikami

Beilstein J. Org. Chem. 2015, 11, 2661–2670, doi:10.3762/bjoc.11.286

Graphical Abstract
  • trifluoroacetate and copper iodide. Preparation of trifluoromethylcopper from trifluoromethyl ketone. Trifluoromethylation of aryl iodides. aIsolated yield. b1 equivalent each of CF3Cu reagent and 1,10-phenanthroline were used. cReaction temperature was 50 °C. Pentafluoroethylation of aryl bromides. aYield was
PDF
Album
Review
Published 18 Dec 2015

Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry

  • Zhan-Jiang Zheng,
  • Ding Wang,
  • Zheng Xu and
  • Li-Wen Xu

Beilstein J. Org. Chem. 2015, 11, 2557–2576, doi:10.3762/bjoc.11.276

Graphical Abstract
  • olefins. Very recently, Ulven and co-workers reported the synthesis of triazole-linked phenanthroline ligands. They were obtained by the following steps: (1) 1,10-phenanthroline-2,9-dicarbaldehyde (56) was treated with the Ohira–Bestmann reagent to provide the corresponding dialkyne 57; (2) Dialkyne 57
  • bistriazoles. The pyrene-appended thiacalix[4]arene-based bistriazole. The synthesis of triazole-based tetradentate ligands. The synthesis of phenanthroline-2,9-bistriazoles. The three-component reaction for the synthesis of bistriazoles. The one-pot synthesis of bistriazoles. The synthesis of polymer-bearing
PDF
Album
Review
Published 11 Dec 2015

Recent developments in copper-catalyzed radical alkylations of electron-rich π-systems

  • Kirk W. Shimkin and
  • Donald A. Watson

Beilstein J. Org. Chem. 2015, 11, 2278–2288, doi:10.3762/bjoc.11.248

Graphical Abstract
  • benzyl radicals under copper catalysis, an alkenylation similar to that developed by Nishikata was realized. Using a mixture of copper and 1,10-phenanthroline, benzylic halides were directly alkenylated using styrenes as coupling partners. Under these conditions, various allylbenzene derivatives were
  • synthesized in very good yields (Scheme 16). Interestingly, the CuCl/phenanthroline catalyst system was also capable of cross coupling styrenes with α-bromocarbonyls and α-bromonitriles. EPR studies confirmed the presence of radical intermediates. Additions to alkynes Recently, ATR type catalysts have also
PDF
Album
Review
Published 23 Nov 2015

Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

  • Kevin Lafaye,
  • Cyril Bosset,
  • Lionel Nicolas,
  • Amandine Guérinot and
  • Janine Cossy

Beilstein J. Org. Chem. 2015, 11, 2223–2241, doi:10.3762/bjoc.11.241

Graphical Abstract
  • with allylic alcohol delivered 88 in a low 31% yield and when an alkene containing a phenanthroline was used, no reaction occurred. By the light of the previously reported observations, these results could be imputed to the deactivation of the ruthenium catalyst caused by N-heteroaromatics (Scheme 33
  • possessing a quinoxaline or a phenanthroline. CM between an acrylate and a 2-methoxy-5-bromo pyridine. Successful CM of an alkene containing a 2-chloropyridine. Variation of the substituent on the pyridine ring. CM involving alkenes containing a variety of N-heteroaromatics. Decomposition of methylidene 2 in
PDF
Album
Review
Published 18 Nov 2015

Recent advances in copper-catalyzed C–H bond amidation

  • Jie-Ping Wan and
  • Yanfeng Jing

Beilstein J. Org. Chem. 2015, 11, 2209–2222, doi:10.3762/bjoc.11.240

Graphical Abstract
  • or secondary sulfonamides 15 with the assistance of 1,10-phenanthroline as a ligand (Scheme 3). Notably, the asymmetric version of a similar amidation had been previously achieved by Clark et al. via copper catalysis in the presence of a chiral oxazoline ligand, which allowed the synthesis of
PDF
Album
Review
Published 17 Nov 2015

C–H bond halogenation catalyzed or mediated by copper: an overview

  • Wenyan Hao and
  • Yunyun Liu

Beilstein J. Org. Chem. 2015, 11, 2132–2144, doi:10.3762/bjoc.11.230

Graphical Abstract
  • ). The catalytic iodination of electron deficient 1,3-azoles was recently realized by Zhao et al. Under the catalytic conditions consisting of LiOt-Bu, 1,10-phenanthroline and CuBr2, a class of different conventional azoles 17, including benzoxazoles, benzothiazole, N-methylbenzimidazole, 5-phenyloxazole
PDF
Album
Review
Published 09 Nov 2015
Other Beilstein-Institut Open Science Activities