Search for "tetrazole" in Full Text gives 81 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2017, 13, 2596–2602, doi:10.3762/bjoc.13.256
Graphical Abstract
Figure 1: Tetrazole-containing drugs.
Scheme 1: Synthesis of acylhydrazino bis(1,5-disubstituted tetrazoles) through two hydrazino-Ugi-azide reacti...
Scheme 2: Synthesis of hydrazides 2a–c. Reagents and conditions: (i) N2H4·H2O, EtOH, reflux, 2–3 h; (ii) CH3I...
Scheme 3: Synthesis of acylhydrazino 1,5-disubstituted tetrazoles 10a–h through multicomponent reactions invo...
Scheme 4: Synthesis of acylhydrazino 1,5-disubstituted tetrazoles 10i–m through multicomponent reactions invo...
Scheme 5: Synthesis of acylhydrazino bis(1,5-disubstituted tetrazoles) 12a–d.
Scheme 6: Possible postmodification reactions of the acylhydrazino bis(1,5-disubstituted tetrazoles) 12a–d.
Beilstein J. Org. Chem. 2017, 13, 2535–2548, doi:10.3762/bjoc.13.250
Graphical Abstract
Figure 1: (A) Adamantylated azoles and derivatives of 1,2,4-triazolo[5,1-c][1,2,4]triazine with antiviral act...
Scheme 1: Synthesis and adamantylation of 15N-labelled 13-15N2 and JHN and JCN data confirming the structures...
Scheme 2: Synthesis and adamantylation of 15N-labelled 20-15N2 and JHN and JCN data confirming the structures...
Scheme 3: Synthesis and adamantylation of 15N-labelled 23-15N2 and JHN and JCN data confirming the structure ...
Scheme 4: Isomerization of 15a in the presence of tetrazolo[1,5-b][1,2,4]triazin-7-one 13-15N2 and isotopic e...
Figure 2: 1D 15N NMR spectra of 30–70 mM 13-15N2, 15a,b-15N2, 20-15N2, 21a,b-15N2, 23-15N2 and 24-15N2 in DMS...
Figure 3: Signals of the C1' and C6 atoms in the proton-decoupled 1D 13C NMR spectra of 30–42 mM 15a,b-15N2, ...
Figure 4: Detection and quantification of the 1H-15N spin–spin interactions in compound 15a-15N2 (DMSO-d6, 45...
Figure 5: ORTEP diagrams of the X-ray structures of compounds 15a-15N2 (a) and 15b-15N2 (b). For clarity, the...
Scheme 5: Mechanism of the isomerization of compounds 15a and 15b.
Beilstein J. Org. Chem. 2017, 13, 2396–2407, doi:10.3762/bjoc.13.237
Graphical Abstract
Figure 1: Hydrogen coupling constants (3JH-H) of (a) H6–H7 for 3a and (b) H5–H6 for 5h.
Figure 2: LUMO coefficients for (a) β-enaminones 1a,h, and their (b) conjugated acids.
Figure 3:
(a) 1H and (b) 13C NMR spectra demonstrating the 3d4d equilibrium in DMSO-d6 at 25 °C.
Figure 4: ORTEP® [45] plot of 7a with thermal ellipsoids drawn at 50% probability level.
Figure 5: Tetrazolo[1,5-a]pyrimidine observed in solution (CDCl3 and DMSO-d6) and 2-azidopyrimidine observed ...
Figure 6: ORTEP® [45] plot of 8i with thermal ellipsoids drawn at 50% probability level.
Figure 7: Representation of the possible equilibrium existing between 6i, 7i, and 8i.
Beilstein J. Org. Chem. 2017, 13, 1596–1660, doi:10.3762/bjoc.13.159
Graphical Abstract
Figure 1: Initial proposal for the core macrolactone structure (left) and the established complete structure ...
Figure 2: Mycolactone congeners and their origins.
Figure 3: Misassigned mycolactone E structure according to Small et al. [50] (11) and the correct structure (6) f...
Figure 4: Schematic illustration of Kishi’s improved mycolactone TLC detection method exploiting derivatizati...
Figure 5: Fluorescent probes derived from natural mycolactone A/B (1a,b) or its synthetic 8-desmethyl analogs...
Figure 6: Tool compounds used by Pluschke and co-workers for elucidating the molecular targets of mycolactone...
Figure 7: Synthetic strategies towards the extended mycolactone core. A) General strategies. B) Kishi’s appro...
Scheme 1: Kishi’s 1st generation approach towards the extended core structure of mycolactones. Reagents and c...
Scheme 2: Kishi’s 2nd generation approach towards the extended core structure of mycolactones. Reagents and c...
Scheme 3: Kishi’s 3rd generation approach towards the extended core structure of mycolactones. Reagents and c...
Scheme 4: Negishi’s synthesis of the extended core structure of mycolactones. Reagents and conditions: a) (i) ...
Scheme 5: Burkart’s (incomplete) 1st generation approach towards the extended core structure of mycolactones....
Scheme 6: Burkart’s (incomplete) 1st, 2nd and 3rd generation approach towards the extended mycolactone core s...
Scheme 7: Altmann’s synthesis of alkyl iodide 91. Reagents and conditions: a) (i) PMB-trichloroacetimidate, T...
Scheme 8: Final steps of Altmann’s synthesis of the extended core structure of mycolactones. Reagents and con...
Scheme 9: Basic principles of the Aggarwal lithiation–borylation homologation process [185,186].
Scheme 10: Aggarwal’s synthesis of the C1–C11 fragment of the mycolactone core. Reagents and conditions: a) Cl...
Scheme 11: Aggarwal’s synthesis of the linear C1–C20 fragment of the mycolactone core. Reagents and conditions...
Figure 8: Synthetic strategies towards the mycolactone A/B lower side chain.
Scheme 12: Gurjar and Cherian’s synthesis of the C1’–C8’ fragment of the mycolactone A/B pentaenoate side chai...
Scheme 13: Gurjar and Cherian’s synthesis of the benzyl-protected mycolactone A/B pentaenoate side chain. Reag...
Scheme 14: Kishi’s synthesis of model compounds for elucidating the stereochemistry of the C7’–C16’ fragment o...
Scheme 15: Kishi’s synthesis of the mycolactone A/B pentaenoate side chain. (a) (i) NaH, (EtO)2P(O)CH2CO2Et, T...
Scheme 16: Feringa and Minnaard's incomplete synthesis of mycolactone A/B pentaenoate side chain. Reagents and...
Scheme 17: Altmann’s approach towards the mycolactone A/B pentaenoate side chain. Reagents and conditions: a) ...
Scheme 18: Negishi’s access to the C1’–C7’ fragment of mycolactone A. Reagents and conditions: a) (i) n-BuLi, ...
Scheme 19: Negishi’s approach to the C1’–C7’ fragment of mycolactone B. Reagents and conditions: a) (i) DIBAL-...
Scheme 20: Negishi’s synthesis of the C8’–C16’ fragment of mycolactone A/B. Reagents and conditions: a) 142, BF...
Scheme 21: Negishi’s assembly of the mycolactone A and B pentaenoate side chains. Reagents and conditions: a) ...
Scheme 22: Blanchard’s approach to the mycolactone A/B pentaenoate side chain. a) (i) Ph3P=C(Me)COOEt, CH2Cl2,...
Scheme 23: Kishi’s approach to the mycolactone C pentaenoate side chain exemplified for the 13’R,15’S-isomer 1...
Scheme 24: Altmann’s (unpublished) synthesis of the mycolactone C pentaenoate side chain. Reagents and conditi...
Scheme 25: Blanchard’s synthesis of the mycolactone C pentaenoate side chain. Reagents and conditions: a) (i) ...
Scheme 26: Kishi’s synthesis of the tetraenoate side chain of mycolactone F exemplified by enantiomer 165. Rea...
Scheme 27: Kishi’s synthesis of the mycolactone E tetraenoate side chain. Reagents and conditions: a) (i) CH2=...
Scheme 28: Wang and Dai’s synthesis of the mycolactone E tetraenoate side chain. Reagents and conditions: a) (...
Scheme 29: Kishi’s synthesis of the dithiane-protected tetraenoate side chain of the minor oxo-metabolite of m...
Scheme 30: Kishi’s synthesis of the mycolactone S1 and S2 pentaenoate side chains. Reagents and conditions: a)...
Scheme 31: Kishi’s 1st generation and Altmann’s total synthesis of mycolactone A/B (1a,b) and Negishi’s select...
Scheme 32: Kishi’s 2nd generation total synthesis of mycolactone A/B (1a,b). Reagents and conditions: a) 2,4,6...
Scheme 33: Blanchard’s synthesis of the 8-desmethylmycolactone core. Reagents and conditions: a) (i) TsCl, TEA...
Scheme 34: Altmann’s (partially unpublished) synthesis of the C20-hydroxylated mycolactone core. Reagents and ...
Scheme 35: Altmann’s and Blanchard’s approaches towards the 11-isopropyl-8-desmethylmycolactone core. Reagents...
Scheme 36: Blanchard’s synthesis of the saturated variant of the C11-isopropyl-8-desmethylmycolactone core. Re...
Scheme 37: Structure elucidation of photo-mycolactones generated from tetraenoate 224.
Scheme 38: Kishi’s synthesis of the linear precursor of the photo-mycolactone B1 lower side chain. Reagents an...
Scheme 39: Kishi’s synthesis of the photo-mycolactone B1 lower side chain. Reagents and conditions: a) LiTMP, ...
Scheme 40: Kishi’s synthesis of a stabilized lower mycolactone side chain. Reagents and conditions: a) (i) TBD...
Scheme 41: Blanchard’s variation of the C12’,C13’,C15’ stereocluster. Reagents and conditions: a) (i) DIBAL-H,...
Scheme 42: Blanchard’s synthesis of aromatic mycolactone polyenoate side chain analogs. Reagents and condition...
Scheme 43: Small’s partial synthesis of a BODIPY-labeled mycolactone derivative and Demangel’s partial synthes...
Scheme 44: Blanchard’s synthesis of the BODIPY-labeled 8-desmethylmycolactones. Reagents and conditions: a) (i...
Scheme 45: Altmann’s synthesis of biotinylated mycolactones. Reagents and conditions: a) (i) CDI, THF, rt, 2 d...
Figure 9: Kishi’s elongated n-butyl carbamoyl mycolactone A/B analog.
Beilstein J. Org. Chem. 2017, 13, 1368–1387, doi:10.3762/bjoc.13.134
Graphical Abstract
Figure 1: General principle of oligonucleotide synthesis.
Scheme 1: Alternative coupling methods used in the synthesis of oligonucleotides.
Scheme 2: Synthesis of ODNs on a precipitative PEG-support by phosphotriester chemistry using MSNT/NMI activa...
Scheme 3: Synthesis of ODNs on a precipitative tetrapodal support by phosphotriester chemistry using 1-hydrox...
Scheme 4: Synthesis of ODNs on a precipitative PEG-support by conventional phosphoramidite chemistry [51].
Scheme 5: Synthesis of ODNs on a precipitative tetrapodal support by conventional phosphoramidite chemistry [43].
Scheme 6: Synthesis of ODNs by an extractive strategy on an adamant-1-ylacetyl support [57].
Scheme 7: Synthesis of ODNs by a combination of extractive and precipitative strategy [58].
Scheme 8: Synthesis of ODNs by phosphoramidite chemistry on a N1,N3,N5-tris(2-aminoethyl)benzene-1,3,5-tricar...
Scheme 9: Synthesis of ORNs by phosphoramidite chemistry on a hydrophobic support [61].
Scheme 10: Synthesis of ORNs by the phosphoramidite chemistry on a precipitative tetrapodal support using 2´-O...
Scheme 11: Synthesis of ORNs by phosphoramidite chemistry on a precipitative tetrapodal support from commercia...
Scheme 12: Synthesis of ODNs on a precipitative PEG-support by H-phosphonate chemistry [65].
Scheme 13: Synthesis of 2´-O-methyl ORN phosphorothioates by phosphoramidite chemistry by making use of nanofi...
Beilstein J. Org. Chem. 2016, 12, 2390–2401, doi:10.3762/bjoc.12.233
Graphical Abstract
Figure 1: Biologically active isoxazoles conjugated to other azole rings.
Scheme 1: Reactions of azolyl enamines with nitrile oxides.
Figure 2: Structures of starting enamines 1 and hydroxamoyl chlorides 2.
Scheme 2: Synthesis of 4-azolylisoxazoles 4a–p from enamines 1a–e and hydroxamoyl chlorides 2a–h. Reaction co...
Figure 3: Imidazolylisoxazole 4a according to XRD data in the thermal ellipsoids of the 50% probability level....
Figure 4: Isoxazolylisoxazole 4p according to XRD data with thermal ellipsoids of 50% probability level.
Scheme 3: Plausible mechanisms for reaction of hydroxamoyl chlorides 2 with imidazolyl enamines 1a,b.
Figure 5: Geometries of enamine 1a appropriate to the calculated minima on the PES, and their relative free e...
Scheme 4: Calculated pathways for the formation of experimentally observed 3a, regioisomer 7 and isoxazoline 8...
Figure 6: Structures of the localized transition states. Lengths of the forming bonds are given in Å.
Figure 7: Summary of the calculated pathways of the cycloaddition reaction between enamine 1a and benzonitril...
Figure 8: Isosurface plots of the HOMO of enamine 1a_1 (bottom) and the LUMO of nitrile oxide 6 (top) in the ...
Beilstein J. Org. Chem. 2016, 12, 1000–1039, doi:10.3762/bjoc.12.98
Graphical Abstract
Figure 1: 3-Hydroxyoxindole-containing natural products and biologically active molecules.
Scheme 1: Chiral CNN pincer Pd(II) complex 1 catalyzed asymmetric allylation of isatins.
Scheme 2: Asymmetric allylation of ketimine catalyzed by the chiral CNN pincer Pd(II) complex 2.
Scheme 3: Pd/L1 complex-catalyzed asymmetric allylation of 3-O-Boc-oxindoles.
Scheme 4: Cu(OTf)2-catalyzed asymmetric direct addition of acetonitrile to isatins.
Scheme 5: Chiral tridentate Schiff base/Cu complex catalyzed asymmetric Friedel–Crafts alkylation of isatins ...
Scheme 6: Guanidine/CuI-catalyzed asymmetric alkynylation of isatins with terminal alkynes.
Scheme 7: Asymmetric intramolecular direct hydroarylation of α-ketoamides.
Scheme 8: Plausible catalytic cycle for the direct hydroarylation of α-ketoamides.
Scheme 9: Ir-catalyzed asymmetric arylation of isatins with arylboronic acids.
Scheme 10: Enantioselective decarboxylative addition of β-ketoacids to isatins.
Scheme 11: Ruthenium-catalyzed hydrohydroxyalkylation of olefins and 3-hydroxy-2-oxindoles.
Scheme 12: Proposed catalytic mechanism and stereochemical model.
Scheme 13: In-catalyzed allylation of isatins with stannylated reagents.
Scheme 14: Modified protocol for the synthesis of allylated 3-hydroxyoxindoles.
Scheme 15: Hg-catalyzed asymmetric allylation of isatins with allyltrimethylsilanes.
Scheme 16: Enantioselective additions of organoborons to isatins.
Scheme 17: Asymmetric aldol reaction of isatins with cyclohexanone.
Scheme 18: Enantioselective aldol reactions of aliphatic aldehydes with isatin derivatives and the plausible t...
Scheme 19: Enantioselective aldol reaction of isatins and 2,2-dimethyl-1,3-dioxan-5-one.
Scheme 20: Asymmetric aldol reactions between ketones and isatins.
Scheme 21: Phenylalanine lithium salt-catalyzed asymmetric synthesis of 3-alkyl-3-hydroxyoxindoles.
Scheme 22: Aldolization between isatins and dihydroxyacetone derivatives.
Scheme 23: One-pot asymmetric synthesis of convolutamydine A.
Scheme 24: Asymmetric aldol reactions of cyclohexanone and acetone with isatins.
Scheme 25: Aldol reactions of acetone with isatins.
Scheme 26: Aldol reactions of ketones with isatins.
Scheme 27: Enantioselective allylation of isatins.
Scheme 28: Asymmetric aldol reaction of trifluoromethyl α-fluorinated β-keto gem-diols with isatins.
Scheme 29: Plausible mechanism proposed for the asymmetric aldol reaction.
Scheme 30: Asymmetric aldol reaction of 1,1-dimethoxyacetone with isatins.
Scheme 31: Enantioselective Friedel-Crafts reaction of phenols with isatins.
Scheme 32: Enantioselective addition of 1-naphthols with isatins.
Scheme 33: Enantioselective aldol reaction between 3-acetyl-2H-chromen-2-ones and isatins.
Scheme 34: Stereoselective Mukaiyama–aldol reaction of fluorinated silyl enol ethers with isatins.
Scheme 35: Asymmetric vinylogous Mukaiyama–aldol reaction between 2-(trimethylsilyloxy)furan and isatins.
Scheme 36: β-ICD-catalyzed MBH reactions of isatins with maleimides.
Scheme 37: β-ICD-catalyzed MBH reactions of 7-azaisatins with maleimides and activated alkenes.
Scheme 38: Enantioselective aldol reaction of isatins with ketones.
Scheme 39: Direct asymmetric vinylogous aldol reactions of allyl ketones with isatins.
Scheme 40: Enantioselective aldol reactions of ketones with isatins.
Scheme 41: The MBH reaction of isatins with α,β-unsaturated γ-butyrolactam.
Scheme 42: Reactions of tert-butyl hydrazones with isatins followed by oxidation.
Scheme 43: Aldol reactions of isatin derivatives with ketones.
Scheme 44: Enantioselective decarboxylative cyanomethylation of isatins.
Scheme 45: Catalytic kinetic resolution of 3-hydroxy-3-substituted oxindoles.
Scheme 46: Lewis acid catalyzed Friedel–Crafts alkylation of 3-hydroxy-2-oxindoles with electron-rich phenols.
Scheme 47: Lewis acid catalyzed arylation of 3-hydroxyoxindoles with aromatics.
Scheme 48: Synthetic application of 3-arylated disubstituted oxindoles in the construction of core structures ...
Scheme 49: CPA-catalyzed dearomatization and arylation of 3-indolyl-3-hydroxyoxindoles with tryptamines and 3-...
Scheme 50: CPA-catalyzed enantioselective decarboxylative alkylation of β-keto acids with 3-hydroxy-3-indolylo...
Scheme 51: BINOL-derived imidodiphosphoric acid-catalyzed enantioselective Friedel–Crafts reactions of indoles...
Scheme 52: CPA-catalyzed enantioselective allylation of 3-indolylmethanols.
Scheme 53: 3-Indolylmethanol-based substitution and cycloaddition reactions.
Scheme 54: CPA-catalyzed asymmetric [3 + 3] cycloaddtion reactions of 3-indolylmethanols with azomethine ylide...
Scheme 55: CPA-catalyzed three-component cascade Michael/Pictet–Spengler reactions of 3-indolylmethanols and a...
Scheme 56: Acid-promoted chemodivergent and stereoselective synthesis of diverse indole derivatives.
Scheme 57: CPA-catalyzed asymmetric formal [3 + 2] cycloadditions.
Scheme 58: CPA-catalyzed enantioselective cascade reactions for the synthesis of C7-functionlized indoles.
Scheme 59: Lewis acid-promoted Prins cyclization of 3-allyl-3-hydroxyoxindoles with aldehydes.
Scheme 60: Ga(OTf)3-catalyzed reactions of allenols and phenols.
Scheme 61: I2-catalyzed construction of pyrrolo[2.3.4-kl]acridines from enaminones and 3-indolyl-3-hydroxyoxin...
Scheme 62: CPA-catalyzed asymmetric aza-ene reaction of 3-indolylmethanols with cyclic enaminones.
Scheme 63: Asymmetric α-alkylation of aldehydes with 3-indolyl-3-hydroxyoxindoles.
Scheme 64: Organocatalytic asymmetric α-alkylation of enolizable aldehydes with 3-indolyl-3-hydroxyoxindoles a...
Beilstein J. Org. Chem. 2016, 12, 415–428, doi:10.3762/bjoc.12.45
Graphical Abstract
Figure 1: Two-dimensional structure and nomenclature of the oxazolidinone linezolid. The different rings are ...
Figure 2: Superposition of all low energy minima of linezolid applying AMBER (left) and OPLS-AA (right) force...
Figure 3: Superposition of the found global linezolid gas phase minimum (AMBER on the left and OPLS-AA on the...
Figure 4: RMSD/Potential energy plots for linezolid in the gas phase. The OPLS-AA plot is characterized by an...
Figure 5: Model building process. a) linezolid bound to the 50S subunit from Haloarcula marismortui, code 3CP...
Figure 6: Superposition of all 43 minima of the ribosome–linezolid complex. Linezolid is shown in yellow and ...
Figure 7: Comparison between ribo/S-lzd and ribo/R-lzd (quasi) global minima. On top, a 2D interaction diagra...
Scheme 1: Experimentally characterized linezolid analogues that were used as test cases for our simulation pr...
Scheme 2: Predicted new linezolid-like candidates.
Beilstein J. Org. Chem. 2015, 11, 2689–2695, doi:10.3762/bjoc.11.289
Graphical Abstract
Figure 1: Structures of cADPR (1), cIDPR (2), cpIDP (3) and cpIMP (4).
Figure 2: Synthetic strategies explored in the cyclization step via phosphodiester bond formation.
Scheme 1: i) (iPr)2NP(OCE)Cl, DIPEA, THF, 1 h, rt; ii) 1) 1H-tetrazole, THF, 2) t-BuOOH, 2 h, rt; iii) 1) (iP...
Scheme 2: i) DNCB, K2CO3, DMF, 4 h, 80 °C; ii) 5-aminopentan-1-ol, DMF, 16 h, 50 °C; iii) Ac2O, pyridine, 2 h...
Figure 3: Effect of 3 and 4 on intracellular [Ca2+] in NGF-differentiated PC12 cells. (A) and (B): representa...
Beilstein J. Org. Chem. 2015, 11, 2326–2333, doi:10.3762/bjoc.11.253
Graphical Abstract
Figure 1: Structures of the anthraquinone derivatives Reactive Blue 2 (RB-2) and bromaminic acid sodium salt.
Scheme 1: Conventional methods for the synthesis of bromaminic acid sodium salt. (A) solvent method, (B) oleu...
Scheme 2: Synthesis of 2-substituted 1-amino-4-bromoanthraquinone derivatives 6–9.
Scheme 3: Synthesis of 2-substituted 1-amino-4-bromoanthraquinone derivatives 7–10.
Scheme 4: Synthesis of 2-substituted 1-amino-4-bromoanthraquinone derivatives 2 and 15.
Beilstein J. Org. Chem. 2015, 11, 385–391, doi:10.3762/bjoc.11.44
Graphical Abstract
Scheme 1: Interaction of 2-ethoxymethylidene-3-oxo esters 1a–c with 5-AT. R = CF3 (a), (CF2)2H (b), Me (c). C...
Scheme 2: Synthesis of pyrimidines 4a,b and 5. R= CF3 (a), (CF2)2H (b). Conditions: i: 1,4-dioxane, NaOAc, Δ,...
Figure 1: X-ray crystal structure of compound 5 (ORTEP drawing, 50% probability level).
Scheme 3: Interaction of 2-ethoxymethylidene malonate 1e with 5-AT. Conditions: i: EtOH, Et3N, Δ; ii: EtOH, Δ....
Scheme 4: The reaction of 3-oxo ester 1d with 5-AT. Conditions, i: TFE, Δ, 48 h.
Scheme 5: Interaction of ester 1f with 5-AT. Conditions i: EtOH (or TFE), Et3N, Δ, 40–60 min; ii: AcOH (or Et...
Figure 2: X-ray crystal structure of compound 11 (ORTEP drawing, 50% probability level).
Beilstein J. Org. Chem. 2014, 10, 1906–1913, doi:10.3762/bjoc.10.198
Graphical Abstract
Figure 1: Retrosynthetic analysis of the bifunctional cytidine derivative 1 for functionalization of a period...
Figure 2: Introduction of the triazolyl moiety into the uridine derivative 7 generating synthon 3. I: 4 equiv...
Figure 3: Preparation of synthon 4 and substitution of the triazolyl moiety of 3 to form the fully protected ...
Figure 4: Synthesis of 2',3'-bis-O-(tert-butyldimethylsilyl)-1-[4-(N'-biotinyl-3,6-dioxaoctane-1,8-diamine)py...
Figure 5: Formation of the phosphoramidite 2 from amino alcohol 13, and subsequent coupling to the 5'-O-depro...
Figure 6: A) Reversed-phase HPLC purification of 1 after complete deprotection of 16. A represents the absorp...
Figure 7: Reaction scheme of periodate oxidation of a 20mer model RNA followed by coupling of cytidine deriva...
Figure 8: Reversed-phase HPLC analysis. A: Crude product of the coupling reaction between the 20mer model RNA...
Beilstein J. Org. Chem. 2014, 10, 1706–1732, doi:10.3762/bjoc.10.179
Graphical Abstract
Figure 1: Selected chemical modifications of natural ribose or 2'-deoxyribose nucleosides leading to the deve...
Scheme 1: (a) Classical Mannich reaction; (b) general structures of selected hydrogen active components and s...
Scheme 2: Reagents and reaction conditions: i. H2O or H2O/EtOH, 60–100 °C, 7 h–10 d; ii. H2, Pd/C or PtO2; ii...
Scheme 3: Reagents and reaction conditions: i. H2O, 90 °C, overnight.
Scheme 4: Reagents and reaction conditions: i. AcOH, H2O, 60 °C, 12 h-5 d; ii. AcOH, H2O, 60 °C, 8 h.
Scheme 5: Reagents and reaction conditions: i. CuBr, THF, reflux, 0.5 h; ii. n-Bu4NF·3H2O, THF, rt, 2 h.
Scheme 6: Reagents and reaction conditions: i. [bmim][PF6], 80 °C, 5–8 h.
Scheme 7: Reagents and reaction conditions: i. EtOH, reflux, 24 h.
Scheme 8: Reagents and reaction conditions: i. NaOAc, H2O, 95 °C, 1–16 h; ii. NaOAc, H2O, 95 °C, 1 h.
Scheme 9: Reagents and reaction conditions: i. a. 37% aq HCl, MeOH; b. NaOAc, 1,4-dioxane, H2O, 100 °C, overn...
Scheme 10: Reagents and reaction conditions: i. DMAP, DCC, MeOH, rt, 1 h.
Scheme 11: The Kabachnik–Fields reaction.
Scheme 12: Reagents and reaction conditions: i. 60 °C, 3 h; ii. 80 °C, 2 h.
Scheme 13: The four-component Ugi reaction.
Scheme 14: Reagents and reaction conditions: i. MeOH, rt, 2–3 d, yields not given.
Scheme 15: Reagents and reaction conditions: i. MeOH/CH2Cl2 (1:1), rt, 24 h, yield not given; ii. 6 N aq HCl, ...
Scheme 16: Reagents and reaction conditions: i. MeOH/H2O, rt, 26 h; ii. aq AcOH, reflux, 50%; iii. reversed ph...
Scheme 17: Reagents and reaction conditions: i. MeOH, rt, 24 h; ii. HCl, MeOH, 0 °C to rt, 6 h, then H2O, rt, ...
Scheme 18: Reagents and reaction conditions: i. DMF/Py/MeOH (1:1:1), rt, 48 h; ii. 10% HCl/MeOH, rt, 30 min.
Scheme 19: Reagents and reaction conditions (R = CH3 or H): i. CH2Cl2/MeOH (2:1), 35–40 °C, 2 d; ii. HF/pyridi...
Scheme 20: Reagents and reaction conditions: i. MeOH, 76%; ii. 80% aq TFA, 100%.
Scheme 21: Reagents and reaction conditions: i. EtOH, rt, 72 h; ii. Zn, aq NaH2PO4, THF, rt, 1 week; then 80% ...
Scheme 22: Reagents and reaction conditions: i. EtOH, rt, 48 h, then silica gel chromatography, 33% for 57 (30...
Scheme 23: Reagents and reaction conditions: i. [bmim]BF4, 80 °C, 4 h; ii. [bmim]BF4, 80 °C, 3 h; iii. [bmim]BF...
Scheme 24: Reagents and reaction conditions: i. [bmim]BF4, 80 °C.
Scheme 25: Reagents and reaction conditions: i. H3PW12O40 (2 mol %), EtOH, 50 °C, 2–15 h; ii. H3PW12O40 (2 mol...
Scheme 26: General scheme of the Biginelli reaction.
Scheme 27: Reagents and reaction conditions: i. EtOH, reflux.
Scheme 28: Reagents and reaction conditions: i. Bu4N+HSO4−, diethylene glycol, 120 °C, 1.5–3 h.
Scheme 29: Reagents and reaction conditions: i. BF3·Et2O, CuCl, AcOH, THF, 65 °C, 24 h; ii. Yb(OTf)3, THF, ref...
Scheme 30: Reagents and reaction conditions: TCT (10 mol %), rt: i. 100 min; ii. 150 min; iii. 140 min.
Scheme 31: Reagents and reaction conditions: i. EtOH, microwave irradiation (300 W), 10 min; ii. EtOH, 75 °C, ...
Scheme 32: The Hantzsch reaction.
Scheme 33: Reagents and reaction conditions: TCT (10 mol %), rt, 80–150 min.
Scheme 34: Reagents and reaction conditions: i. Yb(OTf)3, THF, 90 °C, 12 h; ii. 4 Å molecular sieves, EtOH, 90...
Scheme 35: Reagents and reaction conditions: i. MeOH, 50 °C, 48 h.
Scheme 36: Reagents and reaction conditions: i. MeOH, 25 °C, 5 d.
Scheme 37: Bu4N+HSO4−, diethylene glycol, 80 °C, 1–2 h.
Scheme 38: The three-component carbopalladation of dienes on the example of buta-1,3-diene.
Scheme 39: Reagents and reaction conditions: i. 5 mol % Pd(dba)2, Bu4NCl, ZnCl2, acetonitrile or DMSO, 80 °C o...
Scheme 40: Reagents and reaction conditions: i. 2.5 mol % Pd2(dba)3, tris(2-furyl)phosphine, K2CO3, MeCN or DM...
Scheme 41: Reagents and reaction conditions: i. 2.5 mol % Pd2(dba)3, tris(2-furyl)phosphine, K2CO3, MeCN or DM...
Scheme 42: The three-component Bucherer–Bergs reaction.
Scheme 43: Reagents and reaction conditions: i. MeOH, H2O, 70 °C, 4.5 h; ii. (1) H2, 5% Pd/C, MeOH, 55 °C, 5 h...
Scheme 44: Reagents and reaction conditions: i. pyridine, MgSO4, 100 °C, 28 h, N2; ii. DMF, 70–90 °C, 22–30 h,...
Scheme 45: Reagents and reaction conditions: i. Montmorillonite K-10 clay, microwave irradiation (600 W), 6–10...
Scheme 46: Reagents and reaction conditions: i. Montmorillonite K-10 clay, microwave irradiation (560 W), 6–10...
Scheme 47: Reagents and reaction conditions: i. CeCl3·7H2O (20 mol %), NaI (20 mol %), microwave irradiation (...
Scheme 48: Reagents and reaction conditions: i. PhI(OAc)2 (3 mol %), microwave irradiation (45 °C), 6–9 min.
Scheme 49: Reagents and reaction conditions: i. 117, ethyl pyruvate, TiCl4, dichloromethane, −78 °C, 1 h; then ...
Beilstein J. Org. Chem. 2014, 10, 544–598, doi:10.3762/bjoc.10.50
Graphical Abstract
Scheme 1: The proposed mechanism of the Passerini reaction.
Scheme 2: The PADAM-strategy to α-hydroxy-β-amino amide derivatives 7. An additional oxidation provides α-ket...
Scheme 3: The general accepted Ugi-mechanism.
Scheme 4: Three commonly applied Ugi/cyclization approaches. a) UDC-process, b) UAC-sequence, c) UDAC-combina...
Scheme 5: Ugi reaction that involves the condensation of Armstrong’s convertible isocyanide.
Scheme 6: Mechanism of the U-4C-3CR towards bicyclic β-lactams.
Scheme 7: The Ugi 4C-3CR towards oxabicyclo β-lactams.
Scheme 8: Ugi MCR between an enantiopure monoterpene based β-amino acid, aldehyde and isocyanide resulting in...
Scheme 9: General MCR for β-lactams in water.
Scheme 10: a) Ugi reaction for β-lactam-linked peptidomimetics. b) Varying the β-amino acid resulted in β-lact...
Scheme 11: Ugi-4CR followed by a Pd-catalyzed Sn2 cyclization.
Scheme 12: Ugi-3CR of dipeptide mimics from 2-substituted pyrrolines.
Scheme 13: Joullié–Ugi reaction towards 2,5-disubstituted pyrrolidines.
Scheme 14: Further elaboration of the Ugi-scaffold towards bicyclic systems.
Scheme 15: Dihydroxyproline derivatives from an Ugi reaction.
Scheme 16: Diastereoselective Ugi reaction described by Banfi and co-workers.
Scheme 17: Similar Ugi reaction as in Scheme 16 but with different acids and two chiral isocyanides.
Scheme 18: Highly diastereoselective synthesis of pyrrolidine-dipeptoids via a MAO-N/MCR-procedure.
Scheme 19: MAO-N/MCR-approach towards the hepatitis C drug telaprevir.
Scheme 20: Enantioselective MAO-U-3CR procedure starting from chiral pyrroline 64.
Scheme 21: Synthesis of γ-lactams via an UDC-sequence.
Scheme 22: Utilizing bifunctional groups to provide bicyclic γ-lactam-ketopiperazines.
Scheme 23: The Ugi reaction provided both γ- as δ-lactams depending on which inputs were used.
Scheme 24: The sequential Ugi/RCM with olefinic substrates provided bicyclic lactams.
Scheme 25: a) The structural and dipole similarities of the triazole unit with the amide bond. b) The copper-c...
Scheme 26: The Ugi/Click sequence provided triazole based peptidomimetics.
Scheme 27: The Ugi/Click reaction as described by Nanajdenko.
Scheme 28: The Ugi/Click-approach by Pramitha and Bahulayan.
Scheme 29: The Ugi/Click-combination by Niu et al.
Scheme 30: Triazole linked peptidomimetics obtained from two separate MCRs and a sequential Click reaction.
Scheme 31: Copper-free synthesis of triazoles via two MCRs in one-pot.
Scheme 32: The sequential Ugi/Paal–Knorr reaction to afford pyrazoles.
Scheme 33: An intramolecular Paal–Knorr condensation provided under basic conditions pyrazolones.
Scheme 34: Similar cyclization performed under acidic conditions provided pyrazolones without the trifluoroace...
Scheme 35: The Ugi-4CR towards 2,4-disubstituted thiazoles.
Scheme 36: Solid phase approach towards thiazoles.
Scheme 37: Reaction mechanism of formation of thiazole peptidomimetics containing an additional β-lactam moiet...
Scheme 38: The synthesis of the trisubstituted thiazoles could be either performed via an Ugi reaction with pr...
Scheme 39: Performing the Ugi reaction with DMB-protected isocyanide gave access to either oxazoles or thiazol...
Scheme 40: Ugi/cyclization-approach towards 2,5-disubstituted thiazoles. The Ugi reaction was performed with d...
Scheme 41: Further derivatization of the thiazole scaffold.
Scheme 42: Three-step procedure towards the natural product bacillamide C.
Scheme 43: Ugi-4CR to oxazoles reported by Zhu and co-workers.
Scheme 44: Ugi-based synthesis of oxazole-containing peptidomimetics.
Scheme 45: TMNS3 based Ugi reaction for peptidomimics containing a tetrazole.
Scheme 46: Catalytic cycle of the enantioselective Passerini reaction towards tetrazole-based peptidomimetics.
Scheme 47: Tetrazole-based peptidomimetics via an Ugi reaction and a subsequent sigmatropic rearrangement.
Scheme 48: Resin-bound Ugi-approach towards tetrazole-based peptidomimetics.
Scheme 49: Ugi/cyclization approach towards γ/δ/ε-lactam tetrazoles.
Scheme 50: Ugi-3CR to pipecolic acid-based peptidomimetics.
Scheme 51: Staudinger–Aza-Wittig/Ugi-approach towards pipecolic acid peptidomimetics.
Figure 1: The three structural isomers of diketopiperazines. The 2,5-DKP isomer is most common.
Scheme 52: UDC-approach to obtain 2,5-DKPs, either using Armstrong’s isocyanide or via ethylglyoxalate.
Scheme 53: a) Ugi reaction in water gave either 2,5-DKP structures or spiro compounds. b) The Ugi reaction in ...
Scheme 54: Solid-phase approach towards diketopiperazines.
Scheme 55: UDAC-approach towards DKPs.
Scheme 56: The intermediate amide is activated as leaving group by acid and microwave assisted organic synthes...
Scheme 57: UDC-procedure towards active oxytocin inhibitors.
Scheme 58: An improved stereoselective MCR-approach towards the oxytocin inhibitor.
Scheme 59: The less common Ugi reaction towards DKPs, involving a Sn2-substitution.
Figure 2: Spatial similarities between a natural β-turn conformation and a DKP based β-turn mimetic [158].
Scheme 60: Ugi-based syntheses of bicyclic DKPs. The amine component is derived from a coupling between (R)-N-...
Scheme 61: Ugi-based synthesis of β-turn and γ-turn mimetics.
Figure 3: Isocyanide substituted 3,4-dihydropyridin-2-ones, dihydropyridines and the Freidinger lactams. Bio-...
Scheme 62: The mechanism of the 4-CR towards 3,4-dihydropyridine-2-ones 212.
Scheme 63: a) Multiple MCR-approach to provide DHP-peptidomimetic in two-steps. b) A one-pot 6-CR providing th...
Scheme 64: The MCR–alkylation–MCR procedure to obtain either tetrapeptoids or depsipeptides.
Scheme 65: U-3CR/cyclization employing semicarbazone as imine component gave triazine based peptidomimetics.
Scheme 66: 4CR towards triazinane-diones.
Scheme 67: The MCR–alkylation–IMCR-sequence described by our group towards triazinane dione-based peptidomimet...
Scheme 68: Ugi-4CR approaches followed by a cyclization to thiomorpholin-ones (a) and pyrrolidines (b).
Scheme 69: UDC-approach for benzodiazepinones.
Scheme 70: Ugi/Mitsunobu sequence to BDPs.
Scheme 71: A UDAC-approach to BDPs with convertible isocyanides. The corresponding amide is cleaved by microwa...
Scheme 72: microwave assisted post condensation Ugi reaction.
Scheme 73: Benzodiazepinones synthesized via the post-condensation Ugi/ Staudinger–Aza-Wittig cyclization.
Scheme 74: Two Ugi/cyclization approaches utilizing chiral carboxylic acids. Reaction (a) provided the product...
Scheme 75: The mechanism of the Gewald-3CR includes three base-catalysed steps involving first a Knoevnagel–Co...
Scheme 76: Two structural 1,4-thienodiazepine-2,5-dione isomers by U-4CR/cyclization.
Scheme 77: Tetrazole-based diazepinones by UDC-procedure.
Scheme 78: Tetrazole-based BDPs via a sequential Ugi/hydrolysis/coupling.
Scheme 79: MCR synthesis of three different tricyclic BPDs.
Scheme 80: Two similar approaches both involving an Ugi reaction and a Mitsunobu cyclization.
Scheme 81: Mitsunobu–Ugi-approach towards dihydro-1,4-benzoxazepines.
Scheme 82: Ugi reaction towards hetero-aryl fused 5-oxo-1,4-oxazepines.
Scheme 83: a) Ugi/RCM-approach towards nine-membered peptidomimetics b) Sequential peptide-coupling, deprotect...
Scheme 84: Ugi-based synthesis towards cyclic RGD-pentapeptides.
Scheme 85: Ugi/MCR-approach towards 12–15 membered macrocycles.
Scheme 86: Stereoselective Ugi/RCM approach towards 16-membered macrocycles.
Scheme 87: Passerini/RCM-sequence to 22-membered macrocycles.
Scheme 88: UDAC-approach towards 12–18-membered depsipeptides.
Figure 4: Enopeptin A with its more active derivative ADEP-4.
Scheme 89: a) The Joullié–Ugi-approach towards ADEP-4 derivatives b) Ugi-approach for the α,α-dimethylated der...
Scheme 90: Ugi–Click-strategy for 15-membered macrocyclic glyco-peptidomimetics.
Scheme 91: Ugi/Click combinations provided macrocycles containing both a triazole and an oxazole moiety.
Scheme 92: a) A solution-phase procedure towards macrocycles. b) Alternative solid-phase synthesis as was repo...
Scheme 93: Ugi/cyclization towards cyclophane based macrocycles.
Scheme 94: PADAM-strategy towards eurystatin A.
Scheme 95: PADAM-approach for cyclotheanamide.
Scheme 96: A triple MCR-approach affording RGD-pentapeptoids.
Scheme 97: Ugi-MiBs-approach towards peptoid macrocycles.
Scheme 98: Passerini-based MiB approaches towards macrocycles 345 and 346.
Scheme 99: Macrocyclic peptide formation by the use of amphoteric aziridine-based aldehydes.
Beilstein J. Org. Chem. 2014, 10, 34–114, doi:10.3762/bjoc.10.6
Graphical Abstract
Figure 1: Five and six-membered cyclic peroxides.
Figure 2: Artemisinin and semi-synthetic derivatives.
Scheme 1: Synthesis of 3-hydroxy-1,2-dioxolanes 3a–c.
Scheme 2: Synthesis of dioxolane 6.
Scheme 3: Photooxygenation of oxazolidines 7a–d with formation of spiro-fused oxazolidine-containing dioxolan...
Scheme 4: Oxidation of cyclopropanes 10a–e and 11a–e with preparation of 1,2-dioxolanes 12a–e.
Scheme 5: VO(acac)2-catalyzed oxidation of silylated bicycloalkanols 13a–c.
Scheme 6: Mn(II)-catalyzed oxidation of cyclopropanols 15a–g.
Scheme 7: Oxidation of aminocyclopropanes 20a–c.
Scheme 8: Synthesis of aminodioxolanes 24.
Figure 3: Trifluoromethyl-containing dioxolane 25.
Scheme 9: Synthesis of 1,2-dioxolanes 27a–e by the oxidation of cyclopropanes 26a–e.
Scheme 10: Photoinduced oxidation of methylenecyclopropanes 28.
Scheme 11: Irradiation-mediated oxidation.
Scheme 12: Application of diazene 34 for dioxolane synthesis.
Scheme 13: Mn(OAc)3-catalyzed cooxidation of arylacetylenes 37a–h and acetylacetone with atmospheric oxygen.
Scheme 14: Peroxidation of (2-vinylcyclopropyl)benzene (40).
Scheme 15: Peroxidation of 1,4-dienes 43a,b.
Scheme 16: Peroxidation of 1,5-dienes 46.
Scheme 17: Peroxidation of oxetanes 53a,b.
Scheme 18: Peroxidation of 1,6-diene 56.
Scheme 19: Synthesis of 3-alkoxy-1,2-dioxolanes 62a,b.
Scheme 20: Synthesis of spiro-bis(1,2-dioxolane) 66.
Scheme 21: Synthesis of dispiro-1,2-dioxolanes 68, 70, 71.
Scheme 22: Synthesis of spirohydroperoxydioxolanes 75a,b.
Scheme 23: Synthesis of spirohydroperoxydioxolane 77 and dihydroperoxydioxolane 79.
Scheme 24: Ozonolysis of azepino[4,5-b]indole 80.
Scheme 25: SnCl4-mediated fragmentation of ozonides 84a–l in the presence of allyltrimethylsilane.
Scheme 26: SnCl4-mediated fragmentation of bicyclic ozonide 84m in the presence of allyltrimethylsilane.
Scheme 27: MCl4-mediated fragmentation of alkoxyhydroperoxides 96 in the presence of allyltrimethylsilane.
Scheme 28: SnCl4-catalyzed reaction of monotriethylsilylperoxyacetal 108 with alkene 109.
Scheme 29: SnCl4-catalyzed reaction of triethylsilylperoxyacetals 111 with alkenes.
Scheme 30: Desilylation of tert-butyldimethylsilylperoxy ketones 131a,b followed by cyclization.
Scheme 31: Deprotection of peroxide 133 followed by cyclization.
Scheme 32: Asymmetric peroxidation of methyl vinyl ketones 137a–e.
Scheme 33: Et2NH-catalyzed intramolecular cyclization.
Scheme 34: Synthesis of oxodioxolanes 143a–j.
Scheme 35: Haloperoxidation accompanied by intramolecular ring closure.
Scheme 36: Oxidation of triterpenes 149a–d with Na2Cr2O7/N-hydroxysuccinimide.
Scheme 37: Curtius and Wolff rearrangements to form 1,2-dioxolane ring-retaining products.
Scheme 38: Oxidative desilylation of peroxide 124.
Scheme 39: Synthesis of dioxolane 158, a compound containing the aminoquinoline antimalarial pharmacophore.
Scheme 40: Diastereomers of plakinic acid A, 162a and 162b.
Scheme 41: Ozonolysis of alkenes.
Scheme 42: Cross-ozonolysis of alkenes 166 with carbonyl compounds.
Scheme 43: Ozonolysis of the bicyclic cyclohexenone 168.
Scheme 44: Cross-ozonolysis of enol ethers 172a,b with cyclohexanone.
Scheme 45: Griesbaum co-ozonolysis.
Scheme 46: Reactions of aryloxiranes 177a,b with oxygen.
Scheme 47: Intramolecular formation of 1,2,4-trioxolane 180.
Scheme 48: Formation of 1,2,4-trioxolane 180 by the reaction of 1,5-ketoacetal 181 with H2O2.
Scheme 49: 1,2,4-Trioxolane 186 with tetrazole fragment.
Scheme 50: 1,2,4-Trioxolane 188 with a pyridine fragment.
Scheme 51: 1,2,4-Trioxolane 189 with pyrimidine fragment.
Scheme 52: Synthesis of aminoquinoline-containing 1,2,4-trioxalane 191.
Scheme 53: Synthesis of arterolane.
Scheme 54: Oxidation of diarylheptadienes 197a–c with singlet oxygen.
Scheme 55: Synthesis of hexacyclinol peroxide 200.
Scheme 56: Oxidation of enone 201 and enenitrile 203 with singlet oxygen.
Scheme 57: Synthesis of 1,2-dioxanes 207 by oxidative coupling of carbonyl compounds 206 and alkenes 205.
Scheme 58: 1,2-Dioxanes 209 synthesis by co-oxidation of 1,5-dienes 208 and thiols.
Scheme 59: Synthesis of bicyclic 1,2-dioxanes 212 with aryl substituents.
Scheme 60: Isayama–Mukaiyama peroxysilylation of 1,5-dienes 213 followed by desilylation under acidic conditio...
Scheme 61: Synthesis of bicycle 218 with an 1,2-dioxane ring.
Scheme 62: Intramolecular cyclization with an oxirane-ring opening.
Scheme 63: Inramolecular cyclization with the oxetane-ring opening.
Scheme 64: Intramolecular cyclization with the attack on a keto group.
Scheme 65: Peroxidation of the carbonyl group in unsaturated ketones 228 followed by cyclization of hydroperox...
Scheme 66: CsOH and Et2NH-catalyzed cyclization.
Scheme 67: Preparation of peroxyplakoric acid methyl ethers A and D.
Scheme 68: Hg(OAc)2 in 1,2-dioxane synthesis.
Scheme 69: Reaction of 1,4-diketones 242 with hydrogen peroxide.
Scheme 70: Inramolecular cyclization with oxetane-ring opening.
Scheme 71: Inramolecular cyclization with MsO fragment substitution.
Scheme 72: Synthesis of 1,2-dioxane 255a, a structurally similar compound to natural peroxyplakoric acids.
Scheme 73: Synthesis of 1,2-dioxanes based on the intramolecular cyclization of hydroperoxides containing C=C ...
Scheme 74: Use of BCIH in the intramolecular cyclization.
Scheme 75: Palladium-catalyzed cyclization of δ-unsaturated hydroperoxides 271a–e.
Scheme 76: Intramolecular cyclization of unsaturated peroxyacetals 273a–d.
Scheme 77: Allyltrimethylsilane in the synthesis of 1,2-dioxanes 276a–d.
Scheme 78: Intramolecular cyclization using the electrophilic center of the peroxycarbenium ion 279.
Scheme 79: Synthesis of bicyclic 1,2-dioxanes.
Scheme 80: Preparation of 1,2-dioxane 286.
Scheme 81: Di(tert-butyl)peroxalate-initiated radical cyclization of unsaturated hydroperoxide 287.
Scheme 82: Oxidation of 1,4-betaines 291a–d.
Scheme 83: Synthesis of aminoquinoline-containing 1,2-dioxane 294.
Scheme 84: Synthesis of the sulfonyl-containing 1,2-dioxane.
Scheme 85: Synthesis of the amido-containing 1,2-dioxane 301.
Scheme 86: Reaction of singlet oxygen with the 1,3-diene system 302.
Scheme 87: Synthesis of (+)-premnalane А and 8-epi-premnalane A.
Scheme 88: Synthesis of the diazo group containing 1,2-dioxenes 309a–e.
Figure 4: Plakortolide Е.
Scheme 89: Synthesis of 6-epiplakortolide Е.
Scheme 90: Application of Bu3SnH for the preparation of tetrahydrofuran-containing bicyclic peroxides 318a,b.
Scheme 91: Application of Bu3SnH for the preparation of lactone-containing bicyclic peroxides 320a–f.
Scheme 92: Dihydroxylation of the double bond in the 1,2-dioxene ring 321 with OsO4.
Scheme 93: Epoxidation of 1,2-dioxenes 324.
Scheme 94: Cyclopropanation of the double bond in endoperoxides 327.
Scheme 95: Preparation of pyridazine-containing bicyclic endoperoxides 334a–c.
Scheme 96: Synthesis of 1,2,4-trioxanes 337 by the hydroperoxidation of unsaturated alcohols 335 with 1O2 and ...
Scheme 97: Synthesis of sulfur-containing 1,2,4-trioxanes 339.
Scheme 98: BF3·Et2O-catalyzed synthesis of the 1,2,4-trioxanes 342a–g.
Scheme 99: Photooxidation of enol ethers or vinyl sulfides 343.
Scheme 100: Synthesis of tricyclic peroxide 346.
Scheme 101: Reaction of endoperoxides 348a,b derived from cyclohexadienes 347a,b with 1,4-cyclohexanedione.
Scheme 102: [4 + 2]-Cycloaddition of singlet oxygen to 2Н-pyrans 350.
Scheme 103: Synthesis of 1,2,4-trioxanes 354 using peroxysilylation stage.
Scheme 104: Epoxide-ring opening in 355 with H2O2 followed by the condensation of hydroxy hydroperoxides 356 wi...
Scheme 105: Peroxidation of unsaturated ketones 358 with the H2O2/CF3COOH/H2SO4 system.
Scheme 106: Synthesis of 1,2,4-trioxanes 362 through Et2NH-catalyzed intramolecular cyclization.
Scheme 107: Reduction of the double bond in tricyclic peroxides 363.
Scheme 108: Horner–Wadsworth–Emmons reaction in the presence of peroxide group.
Scheme 109: Reduction of ester group by LiBH4 in the presence of 1,2,4-trioxane moiety.
Scheme 110: Reductive amination of keto-containing 1,2,4-trioxane 370.
Scheme 111: Reductive amination of keto-containing 1,2,4-trioxane and a Fe-containing moiety.
Scheme 112: Acid-catalyzed reactions of Н2О2 with ketones and aldehydes 374.
Scheme 113: Cyclocondensation of carbonyl compounds 376a–d using Me3SiOOSiMe3/CF3SO3SiMe3.
Scheme 114: Peroxidation of 4-methylcyclohexanone (378).
Scheme 115: Synthesis of symmetrical tetraoxanes 382a,b from aldehydes 381a,b.
Scheme 116: Synthesis of unsymmetrical tetraoxanes using of MeReO3.
Scheme 117: Synthesis of symmetrical tetraoxanes using of MeReO3.
Scheme 118: Synthesis of symmetrical tetraoxanes using of MeReO3.
Scheme 119: MeReO3 in the synthesis of symmetrical tetraoxanes with the use of aldehydes.
Scheme 120: Preparation of unsymmmetrical 1,2,4,5-tetraoxanes with high antimalarial activity.
Scheme 121: Re2O7-Catalyzed synthesis of tetraoxanes 398.
Scheme 122: H2SO4-Catalyzed synthesis of steroidal tetraoxanes 401.
Scheme 123: HBF4-Catalyzed condensation of bishydroperoxide 402 with 1,4-cyclohexanedione.
Scheme 124: BF3·Et2O-Catalyzed reaction of gem-bishydroperoxides 404 with enol ethers 405 and acetals 406.
Scheme 125: HBF4-Catalyzed cyclocondensation of bishydroperoxide 410 with ketones.
Scheme 126: Synthesis of symmetrical and unsymmetrical tetraoxanes 413 from benzaldehydes 412.
Scheme 127: Synthesis of bridged 1,2,4,5-tetraoxanes 415a–l from β-diketones 414a–l and H2O2.
Scheme 128: Dimerization of zwitterions 417.
Scheme 129: Ozonolysis of verbenone 419.
Scheme 130: Ozonolysis of O-methyl oxime 424.
Scheme 131: Peroxidation of 1,1,1-trifluorododecan-2-one 426 with oxone.
Scheme 132: Intramolecular cyclization of dialdehyde 428 with H2O2.
Scheme 133: Tetraoxanes 433–435 as by-products in peroxidation of ketals 430–432.
Scheme 134: Transformation of triperoxide 436 in diperoxide 437.
Scheme 135: Preparation and structural modifications of tetraoxanes.
Scheme 136: Structural modifications of steroidal tetraoxanes.
Scheme 137: Synthesis of 1,2,4,5-tetraoxane 454 containing the fluorescent moiety.
Scheme 138: Synthesis of tetraoxane 458 (RKA182).
Beilstein J. Org. Chem. 2013, 9, 2265–2319, doi:10.3762/bjoc.9.265
Graphical Abstract
Scheme 1: Scaled industrial processes for the synthesis of simple pyridines.
Scheme 2: Synthesis of nicotinic acid from 2-methyl-5-ethylpyridine (1.11).
Scheme 3: Synthesis of 3-picoline and nicotinic acid.
Scheme 4: Synthesis of 3-picoline from 2-methylglutarodinitrile 1.19.
Scheme 5: Picoline-based synthesis of clarinex (no yields reported).
Scheme 6: Mode of action of proton-pump inhibitors and structures of the API’s.
Scheme 7: Hantzsch-like route towards the pyridine rings in common proton pump inhibitors.
Figure 1: Structures of rosiglitazone (1.40) and pioglitazone (1.41).
Scheme 8: Synthesis of rosiglitazone.
Scheme 9: Syntheses of 2-pyridones.
Scheme 10: Synthesis and mechanism of 2-pyrone from malic acid.
Scheme 11: Polymer-assisted synthesis of rosiglitazone.
Scheme 12: Synthesis of pioglitazone.
Scheme 13: Meerwein arylation reaction towards pioglitazone.
Scheme 14: Route towards pioglitazone utilising tyrosine.
Scheme 15: Route towards pioglitazone via Darzens ester formation.
Scheme 16: Syntheses of the thiazolidinedione moiety.
Scheme 17: Synthesis of etoricoxib utilising Negishi and Stille cross-coupling reactions.
Scheme 18: Synthesis of etoricoxib via vinamidinium condensation.
Figure 2: Structures of nalidixic acid, levofloxacin and moxifloxacin.
Scheme 19: Synthesis of moxifloxacin.
Scheme 20: Synthesis of (S,S)-2,8-diazabicyclo[4.3.0]nonane 1.105.
Scheme 21: Synthesis of levofloxacin.
Scheme 22: Alternative approach to the levofloxacin core 1.125.
Figure 3: Structures of nifedipine, amlodipine and clevidipine.
Scheme 23: Mg3N2-mediated synthesis of nifedipine.
Scheme 24: Synthesis of rac-amlodipine as besylate salt.
Scheme 25: Aza Diels–Alder approach towards amlodipine.
Scheme 26: Routes towards clevidipine.
Figure 4: Examples of piperidine containing drugs.
Figure 5: Discovery of tiagabine based on early leads.
Scheme 27: Synthetic sequences to tiagabine.
Figure 6: Structures of solifenacin (2.57) and muscarine (2.58).
Scheme 28: Enantioselective synthesis of solifenacin.
Figure 7: Structures of DPP-4 inhibitors of the gliptin-type.
Scheme 29: Formation of inactive diketopiperazines from cis-rotameric precursors.
Figure 8: Co-crystal structure of carmegliptin bound in the human DPP-4 active site (PDB 3kwf).
Scheme 30: Improved route to carmegliptin.
Figure 9: Structures of lamivudine and zidovudine.
Scheme 31: Typical routes accessing uracil, thymine and cytosine.
Scheme 32: Coupling between pyrimidones and riboses via the Vorbrüggen nucleosidation.
Scheme 33: Synthesis of lamivudine.
Scheme 34: Synthesis of raltegravir.
Scheme 35: Mechanistic studies on the formation of 3.22.
Figure 10: Structures of selected pyrimidine containing drugs.
Scheme 36: General preparation of pyrimidines and dihydropyrimidones.
Scheme 37: Synthesis of imatinib.
Scheme 38: Flow synthesis of imatinib.
Scheme 39: Syntheses of erlotinib.
Scheme 40: Synthesis of erlotinib proceeding via Dimroth rearrangement.
Scheme 41: Synthesis of lapatinib.
Scheme 42: Synthesis of rosuvastatin.
Scheme 43: Alternative preparation of the key aldehyde towards rosuvastatin.
Figure 11: Structure comparison between nicotinic acetylcholine receptor agonists.
Scheme 44: Syntheses of varenicline and its key building block 4.5.
Scheme 45: Synthetic access to eszopiclone and brimonidine via quinoxaline intermediates.
Figure 12: Bortezomib bound in an active site of the yeast 20S proteasome ([114], pdb 2F16).
Scheme 46: Asymmetric synthesis of bortezomib.
Figure 13: Structures of some prominent piperazine containing drugs.
Figure 14: Structural comparison between the core of aplaviroc (4.35) and a type-1 β-turn (4.36).
Scheme 47: Examplary synthesis of an aplaviroc analogue via the Ugi-MCR.
Scheme 48: Syntheses of azelastine (5.1).
Figure 15: Structures of captopril, enalapril and cilazapril.
Scheme 49: Synthesis of cilazapril.
Figure 16: Structures of lamotrigine, ceftriaxone and azapropazone.
Scheme 50: Synthesis of lamotrigine.
Scheme 51: Alternative synthesis of lamotrigine (no yields reported).
Figure 17: Structural comparison between imiquimod and the related adenosine nucleoside.
Scheme 52: Conventional synthesis of imiquimod (no yields reported).
Scheme 53: Synthesis of imiquimod.
Scheme 54: Synthesis of imiquimod via tetrazole formation (not all yields reported).
Figure 18: Structures of various anti HIV-medications.
Scheme 55: Synthesis of abacavir.
Figure 19: Structures of diazepam compared to modern replacements.
Scheme 56: Synthesis of ocinaplon.
Scheme 57: Access to zaleplon and indiplon.
Scheme 58: Different routes towards the required N-methylpyrazole 6.65 of sildenafil.
Scheme 59: Polymer-supported reagents in the synthesis of key aminopyrazole 6.72.
Scheme 60: Early synthetic route to sildenafil.
Scheme 61: Convergent preparations of sildenafil.
Figure 20: Comparison of the structures of sildenafil, tadalafil and vardenafil.
Scheme 62: Short route to imidazotriazinones.
Scheme 63: Alternative route towards vardenafils core imidazotriazinone (6.95).
Scheme 64: Bayer’s approach to the vardenafil core.
Scheme 65: Large scale synthesis of vardenafil.
Scheme 66: Mode of action of temozolomide (6.105) as methylating agent.
Scheme 67: Different routes to temozolomide.
Scheme 68: Safer route towards temozolomide.
Figure 21: Some unreported heterocyclic scaffolds in top market drugs.
Beilstein J. Org. Chem. 2013, 9, 1931–1935, doi:10.3762/bjoc.9.228
Graphical Abstract
Figure 1: Structure of symbiodinolide (1).
Scheme 1: Our previous synthesis of the C79–C96 fragment 7.
Scheme 2: Retrosynthetic analysis of the C79–C97 fragment 8.
Scheme 3: Synthesis of aldehyde 20.
Scheme 4: Synthesis of PT-sulfones 23 and 24.
Scheme 5: Synthesis of the C79–C97 fragment 27.
Beilstein J. Org. Chem. 2013, 9, 1730–1736, doi:10.3762/bjoc.9.199
Graphical Abstract
Scheme 1: Synthesis of substituted diethyl oxophosphonate 4.
Scheme 2: Synthesis of substituted diethyl aminophosphonate 7.
Scheme 3: Synthesis of fused diazaphospholo-substituted compounds 10a, 10b.
Scheme 4: Synthesis of fused imidazophosphono-substituted compound 13.
Scheme 5: Synthesis of β-enaminobisphosphonate 15.
Scheme 6: Synthesis of fused imidazophosphono-substituted compounds 17 and 19.
Scheme 7: Isomeric forms of diethyl 2-methylallylphosphonate (18).
Figure 1: Percentage inhibition of granuloma for the tested compounds at a dose of 50 mg per kilogram body we...
Beilstein J. Org. Chem. 2013, 9, 1051–1072, doi:10.3762/bjoc.9.118
Graphical Abstract
Figure 1: The evolution of computer-based monitoring and control within the laboratory of the future. (a) In ...
Figure 2: A selection of the wide range of digital camera devices available, focusing on those that can be at...
Figure 3: (a) Network cameras (Linksys WVC54GC) in operation in the Innovative Technology Centre laboratory. ...
Figure 4: Remote transmission of video imagery and reaction monitoring data.
Figure 5: A camera can assist the chemist in a number of ways. Digital video recordings of reactions can be u...
Figure 6: Suzuki–Miyaura reaction performed within a microfluidic system. The product is observed by high-spe...
Figure 7: Friedel–Crafts reactions performed by using solid-acid catalysis at high pressures. A camera allowe...
Figure 8: (a) The video camera setup providing a view of the reaction within the microwave cavity; (b) a pall...
Figure 9: (a) Buchwald–Hartwig coupling within a microchannel reactor. (b) Camera view of aggregate deposits ...
Figure 10: The key diprotected piperazic acid precursor in the synthesis of chloptosin.
Figure 11: (a) Piperazic acid mixture, and (b) apparatus for enantiomeric upgrading by recorded crystallisatio...
Figure 12: (a) Crystallisation of a Mn(II) polyoxometalate. (b) A bespoke reactor produced using additive fabr...
Figure 13: Computer processing of digital imagery produces numerical data for later processing.
Figure 14: (a) The Morphologi G3 particle image analyser, which uses images captured with a camera microscope ...
Figure 15: Use of the Python Imaging Library to analyse the proportion of an image consisting of red pixels. A...
Figure 16: (a) Arduino [73,75], a flexible open-source platform for rapidly prototyping electronic applications. (b) ...
Figure 17: Patented device incorporating a standard 96-well plate illuminated by a white-light source. The pla...
Figure 18: Simple colour-change experiments to assess a new AF-2400 gas permeable flow reactor. The reactor co...
Figure 19: (a) Ozonolysis of a series of alkenes using ozone in a bottle-reactor; (b) Glaser–Hay coupling usin...
Figure 20: (a) Camera-assisted titration of ammonia using bromocresol green. NH3 is dissolved in the gas-flow ...
Figure 21: (a) Bubble-counting setup. As the output of the gas-flow reactor (hydrogen dissolved in dichloromet...
Figure 22: Usage of digital cameras to enable remote control of reactions.
Figure 23: In-line solvent switching apparatus. The reactor output is directed into a bottle positioned on a h...
Figure 24: Catch and Release apparatus. (1) The amide intermediate is sequestered onto the central sulfonic ac...
Figure 25: Clips from video footage showing the silica reagent changing appearance; the arrows indicate the ed...
Figure 26: Combination of computer vision and automation to enable machine-assisted synthetic processes.
Figure 27: A coloured float at the interface between heavy and light solvents allows a camera to recognise the...
Figure 28: Graphical demonstration of the image-recognition process. At the start of the experiment, the colou...
Figure 29: Application of the computer-vision-enabled liquid–liquid extractor. The product mixture of a hydraz...
Figure 30: Application of a computer-vision technique to measure the dispersion of a plug of material passing ...
Figure 31: Multiple extractors in series controlled by a single camera.
Figure 32: Two-step synthesis of branched aldehydes from aryl iodides using two reactive gases. A liquid–liqui...
Beilstein J. Org. Chem. 2013, 9, 991–1001, doi:10.3762/bjoc.9.114
Graphical Abstract
Scheme 1: Synthesis of hexaethyl dialkylaminomethylidynetrisphosphonates 1 from dichloromethylene dialkylammo...
Scheme 2: Synthesis and some transformations of trisphosphonate 2.
Scheme 3: Attempt to synthesize trisphosphonates by the combination of Arbuzov reaction and dialkyl phosphite...
Scheme 4: Synthesis of hexaethylmethylidynetrisphosphonate 6 via phosphinylation of tetraethyl methylenebisph...
Scheme 5: Synthetic approach to methylidynetrisphosphonate ester 9.
Scheme 6: Synthesis of alkylidyne-1,1,1-trisphosphonate esters 12.
Scheme 7: Two-step one-pot synthesis of propargyl-substituted trisphosphonate 15.
Scheme 8: Synthetic route to trisphosphonate 18 via 7,7-bisphosphonyl-3,5-di-tert-butylquinone methide 17.
Scheme 9: Synthesis of trisphosphonate 18 starting from 2,6-di-tert-butyl-4-(dichloromethyl)phenol.
Scheme 10: Synthesis of triphosphorus derivatives 20 via quinone methides 17 and 19.
Scheme 11: Unexpected phosphonylation of the aromatic nucleus in reactions of quinone methides 19 and 21.
Scheme 12: Multistep synthesis of trisphosphonate 18 starting from quinone methide 25.
Scheme 13: Synthesis of hexaethyl methylidynetrisphosphonate (6) via metal-carbenoid-mediated P–H insertion re...
Scheme 14: Reaction between tert-butylphosphaethyne and diethyl phosphite in the presence of sodium metal.
Scheme 15: Cross metathesis of trisphosphonates 12 with 2-methyl-2-butene and the Grubbs second-generation cat...
Scheme 16: Hydroboration–oxidation of trisphosphonates 12b,e.
Scheme 17: Reaction of 3-butyn-1-ylidenetrisphosphonate 15 with benzyl azide.
Scheme 18: The use of the transsilylation reaction for the synthesis of trisphosphonate salts 37.
Scheme 19: Synthesis of the sodium salt of the acid-labile trisphosphonic acid 38.
Scheme 20: Acidic hydrolysis of trisphosphonate ester 1a.
Scheme 21: Methylation of trisphosphonate 1a.
Scheme 22: Synthesis of the free methylidynetrisphosphonic acid via trisphosphonate salt 38.
Scheme 23: Synthesis of halomethylidynetrisphosphonate salts 43 and 44 by modified Gross’s procedure.
Scheme 24: Synthesis of trisphosphonate modified nucleotides. Reagents: i, 5'-O-tosyl adenosine, MeCN; ii, AMP...
Figure 1: Bond angles and bond distances in pyrophosphate, methylene-1,1-bisphosphonate and fluoromethylidyne...
Beilstein J. Org. Chem. 2013, 9, 754–760, doi:10.3762/bjoc.9.85
Graphical Abstract
Scheme 1: Phenylnitrene–2-pyridylcarbene rearrangement.
Scheme 2: Type I and type II ring opening and ring expansion in 3- and 2-pyridylnitrenes, respectively.
Scheme 3: FVT reactions of 4-azidopyridine (18), 2-(5-tetrazolyl)pyrazine (23) and triazolo[1,5-a]pyrazine (24...
Figure 1: Difference-IR spectrum of 2-diazomethylpyrazine (22) (positive peaks) in Ar matrix at 7 K, obtained...
Figure 2: Ar matrix IR-difference spectra showing the products of broadband UV photolysis of 4-azidopyridine (...
Figure 3: Top: calculated IR spectrum of 20 at the B3LYP/6-31G* level (wavenumbers scaled by 0.9613): ν’ (rel...
Figure 4: Bottom: IR spectrum from the matrix photolysis of azide 18 after the azide has been depleted comple...
Scheme 4: Photolysis reactions of azide 18 and triazole 24 in Ar matrix.
Beilstein J. Org. Chem. 2013, 9, 342–391, doi:10.3762/bjoc.9.39
Graphical Abstract
Figure 1: Change of electron distribution between HS and LS states of an octahedral iron(II) coordination com...
Figure 2: Types of spin transition curves in terms of the molar fraction of HS molecules, γHS(T), as a functi...
Figure 3: Single crystal UV–vis spectra of the spin crossover compound [Fe(ptz)6](BF4)2 (ptz = 1-propyltetraz...
Figure 4: Thermal spin crossover in [Fe(ptz)6](BF4)2 (ptz = 1-propyltetrazole) recorded at three different te...
Figure 5: (a) Mössbauer spectra of the LS compound [Fe(phen)3]X2 recorded over the temperature range 300–5 K....
Figure 6: (left) Demonstration of light-induced spin state trapping (LIESST) in [Fe(ptz)6]BF4)2 with 57Fe Mös...
Figure 7: Schematic representation of the pressure influence (p2 > p1) on the LS and HS potential wells of an...
Figure 8: χMT versus T curves at different pressures for [Fe(phen)2(NCS)2], polymorph II. (Reproduced with pe...
Figure 9: Molecular structure (a) and γHS(T) curves at different pressures for [CrI2(depe)2] (b) (Reproduced ...
Figure 10: HS molar fraction γHS versusT at different pressures for [Fe(phy)2](BF4)2. The hysteresis loop broa...
Figure 11: Proposed structure of the polymeric [Fe(4R-1,2,4-triazole)3]2+ spin crossover cation (a) and plot o...
Figure 12: Temperature dependence of the HS fraction γHS(T), determined from Mössbauer spectra of [Fe(II)xZn1-x...
Figure 13: Influence of the noncoordinated anion on the spin transition curve γHS(T) near the transition tempe...
Figure 14: Spin transition curves γHS(T) for different solvates of the SCO complexes. [Fe(II)(2-pic)3]Cl2·Solv...
Figure 15: ST curves γHS(T) of the deuterated solvates of [Fe(II)(2-pic)3]Cl2·Solv with Solv = C2D5OH and C2H5...
Figure 16: Sketch of the two-step spin transition; [LS–LS] pair is diamagnetic, [LS–HS] is paramagnetic and th...
Figure 17: (left) Temperature dependence of χMT for {[Fe(L)(NCX)2]2bpym}(L = bpym or bt and X = S or Se). (rig...
Figure 18: Temperature dependence of χMT for [bpym, NCS−] (left) and [bpym, NCSe−] (right) at different pressu...
Figure 19: 57Fe Mössbauer spectra of [bpym, NCSe−] measured at 4.2 K at zero field (a) and at 5 T (b) (see tex...
Figure 20: Temperature dependence of χMT for [Fe2(L)3](ClO4)4·2H2O showing a complete two-step spin conversion...
Figure 21: (a) View of the dinuclear unit in the crystal structure of [Fe2(Hsaltrz)5(NCS)4]·4MeOH. (b) Tempera...
Figure 22: (left) AFM pattern recorded in tapping mode at room temperature on hexagonal single crystals of [Fe3...
Figure 23: (right) Stepwise SCO in an Fe4 [2 × 2] grid, which reveals a smooth magnetic profile under ambient ...
Figure 24: (left) View of the discrete nanoball made of Fe(II) SCO units as well as Cu(I) building blocks. (ri...
Figure 25:
(left) Linear dependency between T1/2 in the heating (Δ) and cooling () modes versus the anion volu...
Figure 26: (left) View of the linear chain structure of [Fe(1,2-bis(tetrazol-1-yl)propane)3]2+ along the a axi...
Figure 27: (left) View of the 2D layered structure of [Fe(btr)2(NCS)2]·H2O (at 293 K). The water molecules (in...
Figure 28: (left) Three interpenetrated square networks for [Fe(bpb)2(NCS)2]·MeOH. (right) χMT versus T plot s...
Figure 29: Part of the crystal structure of [Fe{N(entz)3}](BF4)2 (T = 293 K) [335,336]. (Reproduced with permission fro...
Figure 30: (left) Projection of the crystal structure of [Fe(btr)3](ClO4)2 along the c axis revealing a 3D str...
Figure 31: Size-dependent SCO properties in [Fe(pz)Pt(CN)4] (left), change of color upon spin state transition...
Figure 32: Schematic showing the epitaxial growth of polymer {Fe(pz)[Pt(CN)4]} and the spin transition propert...
Figure 33: Microcontact printing (μCP) of nanodots on Si-wafer of [Fe(ptz)6](BF4)2 after deposition of crystal...
Figure 34: (left) Projection of the two independent cations of [Fe(C6–trenH)]2+ with atom numbering scheme (15...
Figure 35: (a) χMT versus T for [Fe(C16-trenH)]Cl2·0.5H2O and variation of the distance d with temperature (T)...
Figure 36: Schematic illustration of the structure of compounds [Fe(Cn-tba)3]X2 adopting a columnar mesophase ...
Figure 37: Temperature dependence of the magnetic moment (M) at 1000 Oe and DSC profiles (inset; 5 °C/min) of ...
Figure 38: Porous structure of the SCO-PMOFs {Fe(pz)[M(II)(CN)4]} (left), representation of the host–guest int...
Figure 39: Porous structure of the guest-free SCO-PMOF’s {Fe(pz)[M(II)(CN)4]} (left), magnetic properties of t...
Figure 40: (left) The 3D porous structure of {Fe(pz)[Pt(CN)4]}·0.5(CS(NH2)2) (1) and {Fe(pz)[Pd(CN)4]}·1.5H2O·...
Figure 41: Top: The 3D porous structure of {Fe(dpe)[Pt(CN)4]}·phenazine in a direction close to [101] emphasiz...
Figure 42: View of the segregated stacking of [Ni(dmit)2]− and [Fe(sal2-trien)]+ in [Fe(qsal)2][Ni(dmit)2]3·CH3...
Figure 43: Thin films based on Fe(III) compounds coordinated to Terthienyl-substituted QsalH ligands [434] together...
Figure 44: Left: Temperature-dependent emission spectra for [Fe2(Hsaltrz)5(NCS)4]·4MeOH at λex = 350 nm over t...
Beilstein J. Org. Chem. 2012, 8, 905–914, doi:10.3762/bjoc.8.103
Graphical Abstract
Scheme 1: Spiropyran as DNA base surrogate 1, DNA base modifications 2 and 3, and diarylethene-modified nucle...
Scheme 2: Synthesis of diarylethene-modified 2’-deoxyuridines 4 [30], 5 and 6.
Figure 1: Photoswitching properties of nucleosides 4–6 (each 20 mM in MeCN, rt). Top: Irradiation of 4 at 242...
Scheme 3: Synthesis of DNA building block 17 [30] and sequences of diarylethene-modified DNA1–DNA4.
Figure 2: Irradiation of dsDNA2 at 310 nm (A, left) and plot of kinetic trace of absorption changes at 450 nm...
Figure 3: UV–vis absorption spectra of ssDNA1–ssDNA4 (2.5 μM in 50 mM Na–Pi buffer, pH 7, 250 mM NaCl, rt).
Beilstein J. Org. Chem. 2012, 8, 629–639, doi:10.3762/bjoc.8.70
Graphical Abstract
Figure 1: Absolute chemical structures of M. fermentans α-glycolipid antigens, GGPL-I and GGPl-III (GGPL: Gly...
Scheme 1: An established synthetic pathway to α-glycosyl-sn-glycerols 4a and 5a. A reagent combination of CBr4...
Scheme 2: Syntheses of GGPL-I homologue I-a and its isomer I-b. Conditions: (a) K2CO3, CH3OH; (b) cesium palm...
Figure 2: 1H NMR spectra of I-a and I-b (500 MHz, 25 °C, CDCl3/CD3OD 10:1). The assignment of sn-glycerol met...
Figure 3: Distributions of gg, gt and tg-conformers in 3-substituted sn-glycerols at 11 mM in solutions of CD...
Figure 4: Distributions of gg, gt and tg-conformers in 1-substituted sn-glycerols. In these sn-isomers, Φ1 an...
Figure 5: A common conformational property of GGPL-I and DPPC. The tail lipid moiety favors two gauche-confor...
Beilstein J. Org. Chem. 2011, 7, 678–698, doi:10.3762/bjoc.7.80
Graphical Abstract
Figure 1: Investigated derivatives.
Figure 2: Modifications of uracil ring.
Figure 3: 5-(3,3,3-Trifluoro-1-methoxypropyl)-2'-deoxyuridine (1).
Scheme 1: Synthesis of 5-(3,3,3-trifluoro-1-methoxypropyl)-2'-deoxyuridine (1) and 5-(3,3,3-trifluoro-1-(2-pr...
Scheme 2: Synthesis of 5-(3,3,3-trifluoro-1-methoxyprop-1-yl)-5,6-dihydro-2'-deoxyuridine (8).
Scheme 3: Synthesis of 5-(methoxy-2-haloethyl)-2'-deoxyuridines 12 and 13.
Scheme 4: Synthesis of 5-(1-methoxy-2-iodoethyl) nucleosides 28–30.
Figure 4: [125I] radiolabelled 5-(1-methoxy-2-iodoethyl)-2'-deoxyuridine 31.
Scheme 5: Synthesis of 5-(1-alkoxy-2-iodoethyl) 34–36 and 5-(1-ethoxy-2,2-diiodoethyl)-2'-deoxyuridine (33).
Scheme 6: Synthesis of 5-(1-methoxy-2-iodoethyl)-3',5'-di-O-acetyl-2'-deoxyuridine (38) and 5-(1-ethoxy-2-iod...
Figure 5: 5-(1-Hydroxy(or ethoxy)-2-haloethyl)-3',5'-di-O-acetyl-2'-deoxyuridines 43–46.
Scheme 7: 5-(1-Methoxy-2,2-dihaloethyl)-2'-deoxyuridines 47–49.
Scheme 8: Synthesis of 5-[1-(2-haloethyl(or nitro)ethoxy)-2-iodoethyl]-2'-deoxyuridines 50–54.
Scheme 9: Synthesis of alkoxyuracil analogues 56–61.
Figure 6: 5-(Methoxy-2-haloethyl)uracils 62–64.
Scheme 10: Synthesis of perfluoro derivatives 70–74.
Scheme 11: Synthesis of 1-β-D-arabinofuranosyl-5-(1-methoxy-2-iodoethyl)uracil (79).
Scheme 12: Synthesis of 1-β-D-arabinofuranosyl-5-(2,2-dibromo-1-methoxyethyl)uracil 82 and uridine analogue 83....
Scheme 13: Synthesis of methoxy derivative 87.
Scheme 14: Synthesis of 5-(1-methoxy-2-azidoethyl)-2'-deoxyuridine (93).
Scheme 15: Synthesis of methoxyalkyl derivatives 96 and 97.
Scheme 16: Synthesis of 5-(1-methoxyethyl)-2'-deoxyuridine (100).
Scheme 17: Synthesis of 2'-deoxy-5-(1-methoxyethyl)-4'-thiouridine (104).
Figure 7: 5-(1-Butoxyethyl)uracil 105 and 5-(1-butoxyethyl)-2'-deoxyuridine (106).
Scheme 18: Synthesis of β- and α-anomer of 5-(1-ethoxy-2-methylprop-1-yl)-2'-deoxyuridine.
Scheme 19: Synthesis of 5-(1-acyloxyethyl)-1-(tetrahydrofuran-2-yl)uracils 117 and 118.
Scheme 20: Synthesis of 5-(1,2-diacetoxyethyl)-3',5'-di-O-acetyl-2'-deoxyuridine 120.
Scheme 21: Synthesis of 5-[alkoxy-(4-nitrophenyl)methyl]uracils 124.
Scheme 22: Synthesis of 5-[alkoxy-(4-nitrophenyl)methyl]uridines 126 and 127.
Scheme 23: Synthesis of phosphoramidite 134. Reaction conditions 1: (a) TBDMSCl, imidazole, pyridine, 33 h, 99...
Scheme 24: Synthesis of phosphoramidite 145. (a) B(OCH3)3, CH(OCH3)3, Na2CO3, MeOH, 150 °C; (b) I2, (0.6 equiv...
Figure 8: Oligonucleotide 146.
Scheme 25: Synthesis of phosphoramidite 150.
Figure 9: 2'-Deoxyuridine derivatives 151–154.
Scheme 26: Synthesis of 2'-deoxyuridine derivatives 151–152.
Scheme 27: Synthesis of 5-[3-(2'-deoxyuridin-5-yl)-1-methoxyprop-1-yl]-2'-deoxyuridine (163).
Scheme 28: Synthesis of “metallocenonucleosides” 164 and 167.
Scheme 29: Synthesis of 5-(2,4:3,5-di-O-benzylidene-D-pentahydroxypentyl)-2,4-di-tert-butoxy-pyrimidine 172 an...
Figure 10: α- and β-pseudouridine (174 and 175).
Figure 11: 5'-Modified pseudouridine 176 and secopseudouridines 177, 178.
Figure 12: Methoxy derivatives 12, 13 and 28.
Figure 13: 5-(1-Methoxy-2,2-dihaloethyl)-2'-deoxyuridines 47–49.
Figure 14: 5-(1-Methoxyethyl)-2'-deoxyuridine 100.
Figure 15: 2'-Deoxy-5-(1-methoxyethyl)-4'-thiouridine (104).
Figure 16: 5-(1-Methoxy-2-azidoethyl)-2'-deoxyuridine (93).
Figure 17: 5-[1-(2-Halo(or nitro)ethoxy-2-iodoethyl)]-2'-deoxyuridines 50–54.
Figure 18: 5-[Alkoxy-(4-nitrophenyl)-methyl] uracil analogues 124, 126 and 127.
Figure 19: Methoxyiodoethyl pyrimidine nucleoside 79.
Figure 20: 5-[alkoxy-(4-nitro-phenyl)-methyl]uridines 126 and 127.