Search results

Search for "copper(II)" in Full Text gives 157 result(s) in Beilstein Journal of Organic Chemistry.

Nanoreactors for green catalysis

  • M. Teresa De Martino,
  • Loai K. E. A. Abdelmohsen,
  • Floris P. J. T. Rutjes and
  • Jan C. M. van Hest

Beilstein J. Org. Chem. 2018, 14, 716–733, doi:10.3762/bjoc.14.61

Graphical Abstract
  • synthesis of dendrimers and their applications as nanoreactors and catalyst carriers have been extensively studied over the last decades [94][95][96]. Fan and co-workers incorporated a bis(oxazoline)-copper(II) complex in the hydrophobic core of a polyether dendrimer [11]. The copper catalytic complex was
PDF
Album
Review
Published 29 Mar 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • , copper(II) species A. The latter reacts with the hydrazone to the trifluoromethylated aminyl radical intermediate C which is stabilized by the lone pair of the adjacent nitrogen atom, and (2-iodobenzoyloxy)copper(II) chloride (B). Finally, intermediate C is oxidized by copper(II) to restore the hydrazone
PDF
Album
Review
Published 17 Jan 2018

Recent applications of click chemistry for the functionalization of gold nanoparticles and their conversion to glyco-gold nanoparticles

  • Vivek Poonthiyil,
  • Thisbe K. Lindhorst,
  • Vladimir B. Golovko and
  • Antony J. Fairbanks

Beilstein J. Org. Chem. 2018, 14, 11–24, doi:10.3762/bjoc.14.2

Graphical Abstract
  • means for the detection of copper(II) salts [65][66][67] and ascorbic acid [68], and also for protein quantification (i.e., for proteins capable of reducing Cu(II) to Cu(I)) [69]. The basis of these detection systems was that two sets of AuNPs were synthesized, one of which was functionalized with azide
PDF
Album
Supp Info
Review
Published 03 Jan 2018

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF3SO2Na

  • Hélène Guyon,
  • Hélène Chachignon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2764–2799, doi:10.3762/bjoc.13.272

Graphical Abstract
  •  69) [20], Langlois and co-workers demonstrated that enol acetates 1a–c were converted into the corresponding α-trifluoromethyl ketones upon treatment with CF3SO2Na with tert-butyl hydroperoxide (TBHP) and a catalytic amount of copper(II) triflate (Scheme 1) [21]. The scope was rather narrow and
  • CF3SO2Na in the presence of copper(I), reacted at the more electron-rich carbon atom of the C=C double bond to give the radical species 5 that was oxidised by copper(II) into the corresponding cationic intermediate 6 via a single electron transfer (SET). Finally, the acetyl cation was eliminated to provide
  • aminotrifluoromethylation of alkenes in an intramolecular version was reported by Zhang and co-workers in 2017 (Scheme 14) [33]. Langlois’ conditions with tert-butyl hydroperoxide and a catalytic amount of copper(II) triflate were used to prepare a series of CF3-containing indoline, pyrrolidine, lactam and lactone
PDF
Album
Full Research Paper
Published 19 Dec 2017

Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole

  • Martina Tireli,
  • Silvija Maračić,
  • Stipe Lukin,
  • Marina Juribašić Kulcsár,
  • Dijana Žilić,
  • Mario Cetina,
  • Ivan Halasz,
  • Silvana Raić-Malić and
  • Krunoslav Užarević

Beilstein J. Org. Chem. 2017, 13, 2352–2363, doi:10.3762/bjoc.13.232

Graphical Abstract
  • reactions [27][28][29][30]. Significantly shortened reaction time and reduced energy requirements, along with clear benefits in yields revealed a wide potential of the mechanochemical approach for CuAAC. The initial report showed applications of standard catalyst systems, copper(II) salts and ascorbic acid
  • situ generated Cu(I) through the reduction of Cu(II). Conventional solution-based CuAAC reaction using copper(II) acetate monohydrate was applied to provide triazoles 5–8. Two modes of heating the reaction mixture were used in order to test the reactivity of the azide reactants: heating at 60 °C for
  • , entry 4). Solution-based method 1b using CuI, N,N’-diisopropylethylamine (DIPEA) and acetic acid afforded compounds 5–7 in 5–52% isolated yield and was thus less successful for the synthesis of 5–8 derivatives than methods 1a and 1a*, which include copper(II) acetate monohydrate as catalyst. Methods 1a
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2017

Preparation of imidazo[1,2-a]-N-heterocyclic derivatives with gem-difluorinated side chains

  • Layal Hariss,
  • Kamal Bou Hadir,
  • Mirvat El-Masri,
  • Thierry Roisnel,
  • René Grée and
  • Ali Hachem

Beilstein J. Org. Chem. 2017, 13, 2115–2121, doi:10.3762/bjoc.13.208

Graphical Abstract
  • [24]. Herein, we report the synthesis of imidazo[1,2-a]pyridines, imidazo[1,2-a]pyrimidines, and imidazopyridazines with fluorinated side chains following an efficient strategy developed by Hajra et al. [25]. This methodology, developed for the synthesis of 3-aroylimidazopyridines, involves a copper
  • (II) acetate-catalyzed aerobic oxidative amination and it proceeds through a tandem Michael addition followed by an intramolecular oxidative amination. Therefore, our target molecules A could be synthesized by the oxidative coupling of 2-aminopyridines with α,β-unsaturated ketones B, themselves easily
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2017

Nitration of 5,11-dihydroindolo[3,2-b]carbazoles and synthetic applications of their nitro-substituted derivatives

  • Roman A. Irgashev,
  • Nikita A. Kazin,
  • Gennady L. Rusinov and
  • Valery N. Charushin

Beilstein J. Org. Chem. 2017, 13, 1396–1406, doi:10.3762/bjoc.13.136

Graphical Abstract
  • many cases 3,6-unsubstituted carbazoles have been nitrated by using fuming or 70% nitric acid with or without addition of acetic anhydride [46]. Two inorganic nitrates, such as copper(II) nitrate [47] or cerium(IV) ammonium nitrate (CAN) [48] have also been used to give 3-mononitro or 3,6-dinitro
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2017

α-Acetoxyarone synthesis via iodine-catalyzed and tert-butyl hydroperoxide-mediateded self-intermolecular oxidative coupling of aryl ketones

  • Liquan Tan,
  • Cui Chen and
  • Weibing Liu

Beilstein J. Org. Chem. 2017, 13, 1079–1084, doi:10.3762/bjoc.13.107

Graphical Abstract
  • been made [12], examples of the synthesis of α-acetoxyaryl ketones through self-intermolecular oxidative coupling of aryl ketones are still rare. Yan and coworkers reported the preparation of α-acyloxyaryl ketones from aryl ketones using a Pybox-copper(II) catalyst [13]. However, the substrate scope
PDF
Album
Supp Info
Letter
Published 06 Jun 2017

Transition-metal-catalyzed synthesis of phenols and aryl thiols

  • Yajun Liu,
  • Shasha Liu and
  • Yan Xiao

Beilstein J. Org. Chem. 2017, 13, 589–611, doi:10.3762/bjoc.13.58

Graphical Abstract
  • -deficient aryl bromides provided good to excellent yields. D-Glucose represents a type of environmentally friendly ligand and can be easily removed during the work-up process. This work is of special value as it was the first report employing copper(II) as the catalyst in the synthesis of phenols. In 2011
PDF
Album
Review
Published 23 Mar 2017

Versatile synthesis of end-reactive polyrotaxanes applicable to fabrication of supramolecular biomaterials

  • Atsushi Tamura,
  • Asato Tonegawa,
  • Yoshinori Arisaka and
  • Nobuhiko Yui

Beilstein J. Org. Chem. 2016, 12, 2883–2892, doi:10.3762/bjoc.12.287

Graphical Abstract
  • )ethylamine (HEEA) were obtained from TCI (Tokyo, Japan). 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) and copper(II) sulfate pentahydrate (CuSO4) were obtained from Wako Pure Chemical Industries (Osaka, Japan). N,N’-Carbonyldiimidazole (CDI) and (+)-sodium L-ascorbate were
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2016

Copper-catalyzed asymmetric sp3 C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst

  • Pierre Querard,
  • Inna Perepichka,
  • Eli Zysman-Colman and
  • Chao-Jun Li

Beilstein J. Org. Chem. 2016, 12, 2636–2643, doi:10.3762/bjoc.12.260

Graphical Abstract
  • -catalyst in DME as solvent, we observed a trace amount of the desired product at room temperature. When different copper salts were evaluated, it was found that CuBr was less active (Table 1, entry 1) and copper(II) bromide provided the highest yield for the arylation of THIQ with phenylboronic acid (2
  • toluene and THF (Table 1, entries 7 and 8). On the other hand, highly polar solvents such as MeCN and MeOH were not beneficial for the formation of the desired product 3a (Table 1, entries 9 and 10). Control experiments performed in the absence of photoredox catalyst and/or transition metal copper(II
  • -arylated PyBox L2 gave very good er under our reaction conditions (Table 2, entry 2). It is noteworthy that the er observed was higher when copper(I) bromide was used as a co–catalyst, compared to copper(II) bromide (Table 2, entry 3), possibly due to the Lewis acidity difference of Cu(I) and Cu(II
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2016

Catalytic Chan–Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant

  • Carl J. Mallia,
  • Paul M. Burton,
  • Alexander M. R. Smith,
  • Gary C. Walter and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2016, 12, 1598–1607, doi:10.3762/bjoc.12.156

Graphical Abstract
  • for C(aryl)–N and C(aryl)–O coupling reactions. Their methods made use of stoichiometric amounts of copper(II) acetate as the catalyst and boronic acids as the aryl donors. In the presence of a base, the coupling could be performed at room temperature. These reactions were subsequently shown to work
  • active compounds [11][12]. In 2009 the groups of Stevens and van der Eycken reported on the Chan–Lam reaction as a continuous flow protocol using copper(II) acetate (1.0 equiv), pyridine (2.0 equiv) and triethylamine (1.0 equiv) in dichloromethane [13]. Generally, when using anilines or phenols as the
  • potentially an improvement on the use of stiochiometric copper(II) acetate in continuous flow, the use of TEMPO or tert-butyl peroxybenzoate as a co-oxidant introduces waste. Employing oxygen gas as an oxidant is preferred as it is cheap, renewable and environmentally benign. We therefore set out to develop a
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2016

Artificial Diels–Alderase based on the transmembrane protein FhuA

  • Hassan Osseili,
  • Daniel F. Sauer,
  • Klaus Beckerle,
  • Marcus Arlt,
  • Tomoki Himiyama,
  • Tino Polen,
  • Akira Onoda,
  • Ulrich Schwaneberg,
  • Takashi Hayashi and
  • Jun Okuda

Beilstein J. Org. Chem. 2016, 12, 1314–1321, doi:10.3762/bjoc.12.124

Graphical Abstract
  • copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVFtev). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen
  • . Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels–Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product. Keywords
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2016

Synthesis of 2-substituted tetraphenylenes via transition-metal-catalyzed derivatization of tetraphenylene

  • Shulei Pan,
  • Hang Jiang,
  • Yanghui Zhang,
  • Yu Zhang and
  • Dushen Chen

Beilstein J. Org. Chem. 2016, 12, 1302–1308, doi:10.3762/bjoc.12.122

Graphical Abstract
  • synthesis of tetraphenylene in 1943 [22], in which 2,2’-dibromobiphenyl was converted to its corresponding Grignard reagent and subsequent addition of copper(II) chloride provided 1 in 16% yield, a variety of methods for constructing the tetraphenylene skeleton have been developed [23][24][25][26][27][28
PDF
Album
Supp Info
Letter
Published 22 Jun 2016

Synthesis, fluorescence properties and the promising cytotoxicity of pyrene–derived aminophosphonates

  • Jarosław Lewkowski,
  • Maria Rodriguez Moya,
  • Anna Wrona-Piotrowicz,
  • Janusz Zakrzewski,
  • Renata Kontek and
  • Gabriela Gajek

Beilstein J. Org. Chem. 2016, 12, 1229–1235, doi:10.3762/bjoc.12.117

Graphical Abstract
  • -yl)methyleneamine [17], a N-(1-pyrene)methylideneglucosamine mercury complex [18], a N-(pyren-1-ylidene)-2-hydroxyaniline-copper(II) and -zinc(II) complexes [19] or N-(pyren-1-ylidene)-4-carboxyaniline-Fe(II) and -Cr(III) complexes [20]. Several phosphorus-supported ligands containing a pyrene-1
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2016

Bi- and trinuclear copper(I) complexes of 1,2,3-triazole-tethered NHC ligands: synthesis, structure, and catalytic properties

  • Shaojin Gu,
  • Jiehao Du,
  • Jingjing Huang,
  • Huan Xia,
  • Ling Yang,
  • Weilin Xu and
  • Chunxin Lu

Beilstein J. Org. Chem. 2016, 12, 863–873, doi:10.3762/bjoc.12.85

Graphical Abstract
  • SQUEEZE [48]. Further details of the structural analysis are summarized in Table 3. X-ray diffraction structure of copper(II) complex 2 with thermal ellipsoids drawn at 30% probability. The anion and hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Cu1-O1 1.931(4), Cu1
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2016

Studies on the synthesis of peptides containing dehydrovaline and dehydroisoleucine based on copper-mediated enamide formation

  • Franziska Gille and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2016, 12, 564–570, doi:10.3762/bjoc.12.55

Graphical Abstract
  • order to avoid oxidation and formation of copper(II) which can act as a Lewis acid. These changes provided peptide 14 (Table 1, entry 1) but this result turned out not to be reproducible. Instead, when the reaction time was extended, only the formation of the α-ketoamide 15 was encountered (Table 1
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2016

Copper-mediated arylation with arylboronic acids: Facile and modular synthesis of triarylmethanes

  • H. Surya Prakash Rao and
  • A. Veera Bhadra Rao

Beilstein J. Org. Chem. 2016, 12, 496–504, doi:10.3762/bjoc.12.49

Graphical Abstract
  • which the final step is the copper(II)-catalyzed arylation of diarylmethanols with arylboronic acids. By using this protocol a variety of symmetrical and unsymmetrical triarylmethanes were synthesized. As an application of the newly developed methodology, we demonstrate a high-yielding synthesis of the
  • report a copper(II) triflate-catalyzed modular synthesis of triarylmethanes by employing diarylmethanols 9 and arylboronic acids 10. It is advantageous to employ a base metal catalyst such as copper(II) triflate instead of palladium [55][56] or nickel (Ni) [57] catalysts and to avoid the use of phosphine
  • above observations, we propose a mechanism for the copper-mediated coupling of phenylboronic acid with diphenylmethanol, leading to triphenylmethane and boric acid (Scheme 3). At the start of the cascade, the first step is the transmetallation of the copper(II) into phenylboronic acid to form reactive
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2016

Interactions of cyclodextrins and their derivatives with toxic organophosphorus compounds

  • Sophie Letort,
  • Sébastien Balieu,
  • William Erb,
  • Géraldine Gouhier and
  • François Estour

Beilstein J. Org. Chem. 2016, 12, 204–228, doi:10.3762/bjoc.12.23

Graphical Abstract
  • efficiency of the CD derivative, the monofunctionalization of the C-3 alcohols was carried out [86]. The temporary complexation of specific β-CD secondary hydroxy functions allows the monofunctionalization of the C-3 position through the formation of a copper(II)–β-CD complex. A diagonal link between copper
PDF
Album
Review
Published 05 Feb 2016

Copper-catalyzed aminooxygenation of styrenes with N-fluorobenzenesulfonimide and N-hydroxyphthalimide derivatives

  • Yan Li,
  • Xue Zhou,
  • Guangfan Zheng and
  • Qian Zhang

Beilstein J. Org. Chem. 2015, 11, 2721–2726, doi:10.3762/bjoc.11.293

Graphical Abstract
  • , the oxidation of Cu(I) with NFSI provided F–Cu(III)–N complex I, which could transform into a copper(II)-stabilized benzenesulfonimide radical II through a redox isomerization equilibrium. Next, the intermolecular radical addition of II to styrene 1g took place, producing benzylic radical III and Cu
PDF
Album
Supp Info
Letter
Published 24 Dec 2015

Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry

  • Zhan-Jiang Zheng,
  • Ding Wang,
  • Zheng Xu and
  • Li-Wen Xu

Beilstein J. Org. Chem. 2015, 11, 2557–2576, doi:10.3762/bjoc.11.276

Graphical Abstract
  • diazo transfer agent (imidazole-1-sulfonyl azide) was performed to convert the amine group into the corresponding azide group, which provided a polymeric substrate for the second CuAAC reaction to give the desired bistriazoles (Scheme 23). In 2009, Zhu and co-workers found that copper(II) acetate (Cu
PDF
Album
Review
Published 11 Dec 2015

Synthesis of Xenia diterpenoids and related metabolites isolated from marine organisms

  • Tatjana Huber,
  • Lara Weisheit and
  • Thomas Magauer

Beilstein J. Org. Chem. 2015, 11, 2521–2539, doi:10.3762/bjoc.11.273

Graphical Abstract
  • rhodium carbenoid derived from diazophosphonoacetate 100 and alcohol 99 afforded intermediate 101 which was treated with lithium diisopropylamide and aldehyde 102 to afford alkene 103 with high E-selectivity. The following asymmetric copper(II)-catalyzed Claisen rearrangement [55], which is postulated to
PDF
Album
Review
Published 10 Dec 2015

Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors

  • Thibault E. Schmid,
  • Sammy Drissi-Amraoui,
  • Christophe Crévisy,
  • Olivier Baslé and
  • Marc Mauduit

Beilstein J. Org. Chem. 2015, 11, 2418–2434, doi:10.3762/bjoc.11.263

Graphical Abstract
  • combination of copper(II) naphthenate (CuNaph) and SimplePhos L16 as the catalytic system [40]. The reported methodology involved a regioselective 1,4 ACA of trimethylaluminium followed by the trapping of the aluminium enolate intermediate with (n-butoxymethyl)diethylamine. An oxidation–elimination sequence
PDF
Album
Review
Published 03 Dec 2015

Recent advances in copper-catalyzed C–H bond amidation

  • Jie-Ping Wan and
  • Yanfeng Jing

Beilstein J. Org. Chem. 2015, 11, 2209–2222, doi:10.3762/bjoc.11.240

Graphical Abstract
  • copper(II) trifluoromethanesulfonate. The notable advantage of this protocol was that simple tosylamide had been directly used as amide nucleophile. The key point enabling the sulfonamidation transformation was the in situ generation of PhI=NTs (21) by employing PhI(OAc)2 in the reaction (Scheme 5
  • the reaction in the synthesis of indoles was later achieved by mean of ligand-free condition via the co-catalysis of Cu(eh)2 (copper(II) 2-ethylhexanoate) and TEMPO under oxygen atmosphere [68]. C(sp)–H bond amidation The C(sp)–H bond in terminal alkynes is more acidic than equivalent alkane and
PDF
Album
Review
Published 17 Nov 2015

C–H bond halogenation catalyzed or mediated by copper: an overview

  • Wenyan Hao and
  • Yunyun Liu

Beilstein J. Org. Chem. 2015, 11, 2132–2144, doi:10.3762/bjoc.11.230

Graphical Abstract
  • ] devised a practical copper-catalyzed halogenation of anilines 8 containing an easily removable N-(2-pyridyl)sulfonyl auxiliary. In the presence of copper(II) halide catalyst and NXS (X = Cl or Br), a class of o-chloro/bromoanilines 9 were efficiently provided under aerobic atmosphere (Scheme 6). The N-(2
  • process (Scheme 12). In the presence of a Cu(II) catalyst, the one-electron oxidation to the phenol led to the occurrence of phenoxy radical 25 via the formation of phenoxyl copper(II) salt 24. The isomeric free radical species 26 then rapidly captured the halogen atom from LiX to give the target product
  • biological functions of halogenated heteroarenes [57], the synthesis of haloheteroarenes via the corresponding arene C–H halogenations also gained extensive attention. In 2009, Pike and co-workers [58] reported the synthesis of halogenated 1,3-thiazoles using copper(II) halide as a catalyst. As shown in
PDF
Album
Review
Published 09 Nov 2015
Other Beilstein-Institut Open Science Activities