Search results

Search for "formic acid" in Full Text gives 164 result(s) in Beilstein Journal of Organic Chemistry.

A novel and practical asymmetric synthesis of eptazocine hydrobromide

  • Ruipeng Li,
  • Zhenren Liu,
  • Liang Chen,
  • Jing Pan,
  • Kuaile Lin and
  • Weicheng Zhou

Beilstein J. Org. Chem. 2018, 14, 2340–2347, doi:10.3762/bjoc.14.209

Graphical Abstract
  • ) and formic acid (7.5 g, 0.16 mol) in water (28 mL) was added paraformaldehyde (4.9 g, 0.16 mol). The mixture was stirred at reflux for 2 h and then alkalified with 30% NaOH (aq) to pH 11. The aqueous layer was extracted with ethyl acetate (30 mL × 3), and the combined organic layers were washed with
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Investigation of the electrophilic reactivity of the biologically active marine sesquiterpenoid onchidal and model compounds

  • Melissa M. Cadelis and
  • Brent R. Copp

Beilstein J. Org. Chem. 2018, 14, 2229–2235, doi:10.3762/bjoc.14.197

Graphical Abstract
  • MeOH/H2O (+ 0.5% formic acid), and the reaction products were investigated by (+)-ESIMS. Preliminary reaction of onchidal (6) with lysozyme was conducted in a solvent mixture of MeOH/H2O (1:15) at 20 °C and examined regularly by (+)-ESIMS. No adducts were detected at 20 hours, but by day 3 (72 h
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2018

A general and atom-efficient continuous-flow approach to prepare amines, amides and imines via reactive N-chloramines

  • Katherine E. Jolley,
  • Michael R. Chapman and
  • A. John Blacker

Beilstein J. Org. Chem. 2018, 14, 2220–2228, doi:10.3762/bjoc.14.196

Graphical Abstract
  • ]2 as catalyst with the ligand (R,R)-TsDPEN, using the hydrogen-donor reagent formic acid/triethylamine (Scheme 1). Under batch conditions, a tres of 120 minutes gave quantitative reduction of the imine, affording the R-isomer in 86% ee. Translating the procedure to continuous flow, a fresh solution
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2018

Assessing the possibilities of designing a unified multistep continuous flow synthesis platform

  • Mrityunjay K. Sharma,
  • Roopashri B. Acharya,
  • Chinmay A. Shukla and
  • Amol A. Kulkarni

Beilstein J. Org. Chem. 2018, 14, 1917–1936, doi:10.3762/bjoc.14.166

Graphical Abstract
  • separator enters into the tubular reactor TR3 at a temperature of 20–40 °C with a residence time of 4 hours. Into this reactor nitrogen gas was pumped through peristaltic pump P7 and formic acid using pump P8. In TR3 gas–liquid reaction takes place. Formation of the lactate salt: In step four, lactic acid
  • was pumped through pump P3 to form the final lactate salt of the product. Here the excess of formic acid and lactic acid was removed by the rotary evaporator RE1, then passes through TR4 into the crystallization tank CT1. The solid product formed was filtered in F1 and stored in a tank T1. Challenges
PDF
Album
Review
Published 26 Jul 2018

Diazirine-functionalized mannosides for photoaffinity labeling: trouble with FimH

  • Femke Beiroth,
  • Tomas Koudelka,
  • Thorsten Overath,
  • Stefan D. Knight,
  • Andreas Tholey and
  • Thisbe K. Lindhorst

Beilstein J. Org. Chem. 2018, 14, 1890–1900, doi:10.3762/bjoc.14.163

Graphical Abstract
  • , the analytes were eluted with a flow rate of 300 nL/min onto an analytical monolithic column (ProSwift RP-4H, 100 µm × 250 mm, Thermo Fisher Scientific) using eluent A (0.05% formic acid (FA)) and eluent B (80% ACN in 0.04% FA). A gradient from 5 to 95% B was applied over 30 min followed by a 10 min
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2018

Development of novel cyclic NGR peptide–daunomycin conjugates with dual targeting property

  • Andrea Angelo Pierluigi Tripodi,
  • Szilárd Tóth,
  • Kata Nóra Enyedi,
  • Gitta Schlosser,
  • Gergely Szakács and
  • Gábor Mező

Beilstein J. Org. Chem. 2018, 14, 911–918, doi:10.3762/bjoc.14.78

Graphical Abstract
  • . All the degradation mixtures were kept at 37 °C, samples of 13 µL were taken at 0 h, 6 h and 72 h. Reaction mixtures were quenched by the addition of 2 µL of formic acid. LC–MS analysis was performed at the end on each sample. Cell uptake Analogous to the description in [17], prior to the treatment
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2018

Synthesis and in vitro biochemical evaluation of oxime bond-linked daunorubicin–GnRH-III conjugates developed for targeted drug delivery

  • Sabine Schuster,
  • Beáta Biri-Kovács,
  • Bálint Szeder,
  • Viktor Farkas,
  • László Buday,
  • Zsuzsanna Szabó,
  • Gábor Halmos and
  • Gábor Mező

Beilstein J. Org. Chem. 2018, 14, 756–771, doi:10.3762/bjoc.14.64

Graphical Abstract
  • of ACN/water (1:1, v/v) and 0.1% formic acid. Liquid chromatography–mass spectrometry (LC–MS) was carried out on the same spectrometer equipped with an Agilent 1100 HPLC system and a diode array detector (Agilent, Waldbronn, Germany). Peptides were separated on a Supelco C18 column (150 mm × 2.1 mm
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2018
Graphical Abstract
  • phenolic product 6 in high yield with unchanged N,N-dimethylaminomethyl group. The same result was obtained at high pressure (40 bar) and upon addition of formic acid for accelerating hydrogenolysis [21]. Obviously, and in contrast to earlier reports on related naphthol Mannich bases [20], the benzylamine
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Stereochemical outcomes of C–F activation reactions of benzyl fluoride

  • Neil S. Keddie,
  • Pier Alexandre Champagne,
  • Justine Desroches,
  • Jean-François Paquin and
  • David O'Hagan

Beilstein J. Org. Chem. 2018, 14, 106–113, doi:10.3762/bjoc.14.6

Graphical Abstract
  • reduced under Noyori’s conditions [12] using (S,S)-Ru(DPEN)2 as catalyst and [2H2]-formic acid as the deuterium source. This afforded the corresponding 7-[2H1]-(S)-benzyl alcohol ((S)-3) in moderate yield (81%) and high ee (95%), as evidenced by 2H-PBLG-NMR. Benzyl alcohol 3 was converted to the
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

Aminosugar-based immunomodulator lipid A: synthetic approaches

  • Alla Zamyatina

Beilstein J. Org. Chem. 2018, 14, 25–53, doi:10.3762/bjoc.14.3

Graphical Abstract
  • performed by treatment with Pd(PPh3)4 in the presence of formic acid and butylamine to provide 3’-OH – containing precursor ready for the acylation by the long-chain acyloxyacyl acid. To avoid migration of the phosphotriester group from position 4’ to position 3’ and the formation of the acyloxy-chain
PDF
Album
Review
Published 04 Jan 2018

Microfluidic radiosynthesis of [18F]FEMPT, a high affinity PET radiotracer for imaging serotonin receptors

  • Thomas Lee Collier,
  • Steven H. Liang,
  • J. John Mann,
  • Neil Vasdev and
  • J. S. Dileep Kumar

Beilstein J. Org. Chem. 2017, 13, 2922–2927, doi:10.3762/bjoc.13.285

Graphical Abstract
  • LC–MS, using the trapping system to improve the sensitivity. Red line is the UV spectra observed at 254 nm. Column = 3 µm, 4.6 × 150 mm C18, Phenomenex, Luna. Solvent MeCN:0.1% formic acid, Flow rate = 1 mL/min, Gradient from 20% ACN to 95% ACN at 10 minutes, hold for 2 minutes at 95% MeCN. Insets
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2017

An efficient synthesis of 1,6-anhydro-N-acetylmuramic acid from N-acetylglucosamine

  • Matthew B. Calvert,
  • Christoph Mayer and
  • Alexander Titz

Beilstein J. Org. Chem. 2017, 13, 2631–2636, doi:10.3762/bjoc.13.261

Graphical Abstract
  • mL) was treated with trifluoroacetic acid (0.1 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, stirred for 3 hours and then coevaporated with toluene (2 × 10 mL). The residue was purified by HPLC (5% acetonitrile + 0.1% formic acid, 9.5 mL/min) to provide the title
PDF
Album
Supp Info
Letter
Published 11 Dec 2017

15N-Labelling and structure determination of adamantylated azolo-azines in solution

  • Sergey L. Deev,
  • Alexander S. Paramonov,
  • Tatyana S. Shestakova,
  • Igor A. Khalymbadzha,
  • Oleg N. Chupakhin,
  • Julia O. Subbotina,
  • Oleg S. Eltsov,
  • Pavel A. Slepukhin,
  • Vladimir L. Rusinov,
  • Alexander S. Arseniev and
  • Zakhar O. Shenkarev

Beilstein J. Org. Chem. 2017, 13, 2535–2548, doi:10.3762/bjoc.13.250

Graphical Abstract
  • -amino-1,2,4-triazole 16-15N2 was synthesized by the interaction of 15N2-hydrazine sulphate (98%, 15N) with S-methyl isothiourea sulphate and consecutive cyclization with formic acid (see the Supporting Information File 1). The use of 16-15N2 in a reaction with ethyl 4,4,4-trifluoroacetoacetate (22
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles

  • Dominik Kellner,
  • Maximilian Weger,
  • Andrea Gini and
  • Olga García Mancheño

Beilstein J. Org. Chem. 2017, 13, 1807–1815, doi:10.3762/bjoc.13.175

Graphical Abstract
  • system PdBr2(dppe)/NaOPh/PhOH [31]. Furthermore, an interesting work by Heck and co-workers in 1976 already showed the possibility of generating the corresponding dimethyloctadienes of isoprene by a reductive dimerization in the presence of formic acid with the dimeric allylpalladium acetate catalyst and
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2017

Ni nanoparticles on RGO as reusable heterogeneous catalyst: effect of Ni particle size and intermediate composite structures in C–S cross-coupling reaction

  • Debasish Sengupta,
  • Koushik Bhowmik,
  • Goutam De and
  • Basudeb Basu

Beilstein J. Org. Chem. 2017, 13, 1796–1806, doi:10.3762/bjoc.13.174

Graphical Abstract
  • formic acid at room temperature [48]. Also, it can serve as an excellent catalyst for the Kumada–Corriu C–C cross-coupling reaction [49]. Since heterogeneous Ni catalysts are rarely studied for the C–S cross-coupling reaction between aryl halides and thiols, presumably because of the fact that the thiols
PDF
Album
Supp Info
Full Research Paper
Published 28 Aug 2017

A new member of the fusaricidin family – structure elucidation and synthesis of fusaricidin E

  • Marcel Reimann,
  • Louis P. Sandjo,
  • Luis Antelo,
  • Eckhard Thines,
  • Isabella Siepe and
  • Till Opatz

Beilstein J. Org. Chem. 2017, 13, 1430–1438, doi:10.3762/bjoc.13.140

Graphical Abstract
  • cm height). Elution was carried out in four steps as follows: ethyl acetate, ethyl acetate/methanol (3:1, v/v), ethyl acetate/methanol (1:1, v/v) and methanol. The third fraction containing the active compounds, was dried in vacuo and dissolved in 40% methanol (MeOH) in 0.1% formic acid (FA
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2017

Total synthesis of elansolids B1 and B2

  • Liang-Liang Wang and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2017, 13, 1280–1287, doi:10.3762/bjoc.13.124

Graphical Abstract
  • lockspray dual ion source in combination with a Waters Alliance 2695 LC system, or with a type QTOF premier (Micromass) spectrometer (ESI mode) in combination with a Waters Acquity UPLC system equipped with a Waters BEH C18 1.7 μm (SN 01473711315545) column (solvent A: water + 0.1% (v/v) formic acid
  • , solvent B: MeOH + 0.1% (v/v) formic acid; flow rate = 0.4 mL/min; gradient (t [min]/solvent B [%]): (0:5) (2.5:95) (6.5:95) (6.6:5) (8:5)). Ion mass signals (m/z) are reported as values in atomic mass units. Optical rotations were measured on a Perkin-Elmer polarimeter type 341 or 241 in a quartz glass
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2017

Cyclodextrins tethered with oligolactides – green synthesis and structural assessment

  • Cristian Peptu,
  • Mihaela Balan-Porcarasu,
  • Alena Šišková,
  • Ľudovít Škultéty and
  • Jaroslav Mosnáček

Beilstein J. Org. Chem. 2017, 13, 779–792, doi:10.3762/bjoc.13.77

Graphical Abstract
  • performed by using a C18 column - Agilent ZORBAX 300SB-C18 4.6 × 150 mm, 5 μm. The samples were separated by gradient elution using water/acetonitrile solvent mixture at 26 °C constant temperature in column compartment. The used eluents were: A – 2 mM formic acid solution and B – acetonitrile. The samples
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2017

Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

  • Carmen Moreno-Marrodan,
  • Francesca Liguori and
  • Pierluigi Barbaro

Beilstein J. Org. Chem. 2017, 13, 734–754, doi:10.3762/bjoc.13.73

Graphical Abstract
  • -doped mesoporous titania film (95% sel. at 30% conversion, 323 K) [150] (Table 1, entries 31–33). The reduction of 7 to 7a was also reported by transfer hydrogenation using formic acid / triethylamine as hydrogen source and packed Au@TiO2 (rutile) catalyst [151]. An outstanding 99.7% yield was achieved
PDF
Album
Review
Published 20 Apr 2017

Fluorinated cyclohexanes: Synthesis of amine building blocks of the all-cis 2,3,5,6-tetrafluorocyclohexylamine motif

  • Tetiana Bykova,
  • Nawaf Al-Maharik,
  • Alexandra M. Z. Slawin and
  • David O'Hagan

Beilstein J. Org. Chem. 2017, 13, 728–733, doi:10.3762/bjoc.13.72

Graphical Abstract
  • pressure. Hydrogenation of 11a over 10% Pd/C in ethyl acetate gave the desired amine 5a but in very low yield (0–15%) [18][19][20]. The structure of 5a was confirmed by X-ray crystallography (Scheme 2). Adding a few drops of formic acid and triethylamine (molar ratio 37:1) to the hydrogenation, furnished
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2017

Conjecture and hypothesis: The importance of reality checks

  • David Deamer

Beilstein J. Org. Chem. 2017, 13, 620–624, doi:10.3762/bjoc.13.60

Graphical Abstract
  • under these conditions, and they were able to detect ≈50 μM formic acid. In a similar laboratory simulation of an alkaline hydrothermal vent, Burcar et al. [18] used mass spectrometry to detect a small yield of dimers produced from adenosine monophosphate circulating in the medium. An alternative
PDF
Commentary
Published 28 Mar 2017

Derivatives of the triaminoguanidinium ion, 5. Acylation of triaminoguanidines leading to symmetrical tris(acylamino)guanidines and mesoionic 1,2,4-triazolium-3-aminides

  • Jan Szabo,
  • Julian Greiner and
  • Gerhard Maas

Beilstein J. Org. Chem. 2017, 13, 579–588, doi:10.3762/bjoc.13.57

Graphical Abstract
  • been addressed only rarely, reactions with acid chlorides appear to be unknown. We have recently reported on the threefold carbamoylation of N,N’,N’’-tris(benzylamino)guanidinium salts with aryl isocyanates [3]. Concerning the reaction with carboxylic acids, it is known that TAG-Cl and formic acid on
  • heating yield 3-hydrazinyl-4-amino-4H-1,2,4-triazole hydrochloride (I, R = H) (Scheme 1) [13]. With the higher homologs of formic acid, the authors of that study observed the formation of resinous materials only. In a recent paper, however, evidence for the formation of the corresponding derivatives of I
  • (R = Me, CF3, Ph, ClCH2) in good yields was presented, although they were transformed further without isolation [14]. An old observation with a long-lasting impact was made by M. Busch who studied the reaction of formic acid with triphenylaminoguanidine: the originally assumed bicyclic constitution
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2017

Secondary metabolome and its defensive role in the aeolidoidean Phyllodesmium longicirrum, (Gastropoda, Heterobranchia, Nudibranchia)

  • Alexander Bogdanov,
  • Cora Hertzer,
  • Stefan Kehraus,
  • Samuel Nietzer,
  • Sven Rohde,
  • Peter J. Schupp,
  • Heike Wägele and
  • Gabriele M. König

Beilstein J. Org. Chem. 2017, 13, 502–519, doi:10.3762/bjoc.13.50

Graphical Abstract
  • using the following solvent gradient program: A. water + 0.1% formic acid and B. acetonitrile + 0.1% formic acid; 5% B 0–2 min, 5–95% B 2–14 min, 95% B 14–17 min, 95–5% B 17–22 min. The column oven was adjusted to 30 °C. Complex chromatograms obtained from VLC fractions 5–8 by UPLC–HRMS analysis
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2017

Synthesis of 1-indanones with a broad range of biological activity

  • Marika Turek,
  • Dorota Szczęsna,
  • Marek Koprowski and
  • Piotr Bałczewski

Beilstein J. Org. Chem. 2017, 13, 451–494, doi:10.3762/bjoc.13.48

Graphical Abstract
  • reaction of malonic acid with chlorobenzaldehyde [21]. In the first step, the substrates reacted in the presence of formic acid and diethylamine to form 3-chlorophenylpropionic acid followed by a intramolecular Friedel–Crafts acylation with malonyl chloride in the presence of zinc chloride to give 5-chloro
PDF
Album
Review
Published 09 Mar 2017

Adsorption of RNA on mineral surfaces and mineral precipitates

  • Elisa Biondi,
  • Yoshihiro Furukawa,
  • Jun Kawai and
  • Steven A. Benner

Beilstein J. Org. Chem. 2017, 13, 393–404, doi:10.3762/bjoc.13.42

Graphical Abstract
  • (25 °C, 37 °C, 55 °C, 75 °C, or 95 °C), and incubated for two hours. After incubation, RNA was eluted from aragonite with 1 M formic acid, purified, and loaded on denaturing PAGE with a set of control samples where RNA was treated the same way, but in aqueous phase (see Materials and Methods
  • to the tubes’ plastic, was released by washing the surfaces with 100 mM aqueous formic acid (100 µL); the released RNA was recovered in new tubes. These samples were subjected to three cycles of evaporation and resuspension in ddH2O to eliminate formic acid. The residue was then dissolved in 95
PDF
Album
Full Research Paper
Published 01 Mar 2017
Other Beilstein-Institut Open Science Activities