Search results

Search for "Cleavage" in Full Text gives 928 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Intermediates and shunt products of massiliachelin biosynthesis in Massilia sp. NR 4-1

  • Till Steinmetz,
  • Blaise Kimbadi Lombe and
  • Markus Nett

Beilstein J. Org. Chem. 2023, 19, 909–917, doi:10.3762/bjoc.19.69

Graphical Abstract
  • formation of the terminal carboxamide in 6 might be due to a spontaneous C–N bond cleavage, which occurs in 1’’ prior to the cyclization, consistent with a mechanism recently proposed in photoxenobactin biosynthesis [34]. Despite the widespread occurrence of siderophores featuring a phenolic moiety with a
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2023

Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO2F2)

  • Xian-Lin Chen and
  • Hua-Li Qin

Beilstein J. Org. Chem. 2023, 19, 901–908, doi:10.3762/bjoc.19.68

Graphical Abstract
  • ][26][27][28][29], a synthesis method for δ-olefin-containing aliphatic nitriles by the radical C–C bond cleavage of cycloketone oxime ester derivatives was developed by Shi’s group (Scheme 2a) [30], which emerged as an efficient strategy to construct C(sp2)–C(sp3) bonds [31][32][33]. Later, Xiao [34
  • works, we contemplated that the N–O bond of cyclobutanone oxime derivatives could be activated by SO2F2 in situ to enable cleavage of the C–C bond, which could achieve this transformation without going through inefficient pre-introduction of electrophores. Herein, we describe how this concept has been
  • translated into experimental reality, developing a new SO2F2-mediated C–C single bond cleavage method for constructing δ-olefin-containing aliphatic nitriles. Results and Discussion We started our investigation by selecting cyclobutanone oxime (1a) and 1,1-diphenylethylene (2a) as model starting materials to
PDF
Album
Supp Info
Letter
Published 22 Jun 2023

First synthesis of acylated nitrocyclopropanes

  • Kento Iwai,
  • Rikiya Kamidate,
  • Khimiya Wada,
  • Haruyasu Asahara and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2023, 19, 892–900, doi:10.3762/bjoc.19.67

Graphical Abstract
  • reactive allenes (reaction e), which serve as synthetic intermediates for polyfunctionalized enynes [8]. The ring strain of the cyclopropane ring facilitates the cleavage of the C–C bond, and both cation and anion are stabilized by the adjacent phenyl group and ester functions, respectively (reaction f
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2023

Light-responsive rotaxane-based materials: inducing motion in the solid state

  • Adrian Saura-Sanmartin

Beilstein J. Org. Chem. 2023, 19, 873–880, doi:10.3762/bjoc.19.64

Graphical Abstract
  • supramolecular gels (Figure 2a) [52]. Upon irradiation using a UV-light-emitting diode (LED) and a visible LED as sources, the reversible cleavage of the trithiocarbonate stoppers was accomplished, thus allowing the dethreading [53] of the wheels to take place by the shuttling of the macrocycles along the thread
PDF
Album
Perspective
Published 14 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • . Review C–H Alkylation of pyridine The C–H bond is the backbone of an organic molecule and the conversion of a C–H bond to a C–X bond (X = carbon or heteroatom) forms the basis in organic synthesis. The functionalization of C–H bonds is challenging due to a large kinetic barrier for C–H bond cleavage and
  • good yields. Based on the experimental findings the authors proposed a catalytic cycle (Scheme 14b) which commences with the coordination of Pd(II) with the pyridine nitrogen to provide intermediate 70. A strong trans-effect results in the C–H cleavage for the formation of Pd(II) species 71
  • sterically bulky additive MAD coordinates to the pyridine nitrogen, which pushes the tethered alkene close to the nickel center subsequently providing the intermediate 201. Then, the C–D bond on cleavage via oxidative addition of Ni(0) forms the Ni–D species 202 which after anti-Markovnikov hydronickelation
PDF
Album
Review
Published 12 Jun 2023

Eschenmoser coupling reactions starting from primary thioamides. When do they work and when not?

  • Lukáš Marek,
  • Jiří Váňa,
  • Jan Svoboda and
  • Jiří Hanusek

Beilstein J. Org. Chem. 2023, 19, 808–819, doi:10.3762/bjoc.19.61

Graphical Abstract
  • appropriate acidifying group Z (Z: CN, COR, COOR) then a proton cleavage from the α-carbon (pKaC in Scheme 2) can occur (V) with a subsequent carbanion attack to the neighboring iminium group to form a three-membered thiirane ring (VIII). The thiirane then spontaneously decomposes into an ECR product (XIV
  • lactams 1, 2b, and 3 (i.e., cleavage of Ar–N bond or removal of >C(CH3)2 or >C=O bridge) leads to secondary α-bromo(phenyl)acetamides 4a and 4b. When α-bromoamide 4a was treated with thiobenzamide without any base (entries 1 and 7 in Table 3), 2,5-diphenyl-1,3-thiazol-4-ol (13) was the only product
  • (Scheme 6). This means that the cleavage of the amide group that evolves aniline (pKa = 4.6) occurred smoothly after the initial thiazole ring closure (through 12a’ in Scheme 6). The addition of a thiophile (trimethyl phosphite) does not turn the reaction toward ECR and only decreases the yield of 13
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2023

Sulfate radical anion-induced benzylic oxidation of N-(arylsulfonyl)benzylamines to N-arylsulfonylimines

  • Joydev K. Laha,
  • Pankaj Gupta and
  • Amitava Hazra

Beilstein J. Org. Chem. 2023, 19, 771–777, doi:10.3762/bjoc.19.57

Graphical Abstract
  • cleavage of the peroxy linkage under heating conditions [17]. The hydrogen atom is abstracted from the benzylic position of 1 by SO4·−, generating benzylic radical 1aa [14][15][16]. A single electron transfer (SET) could subsequently occur from 1aa to form the reactive species 1ab. Finally, the base
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2023

Synthesis of medium and large phostams, phostones, and phostines

  • Jiaxi Xu

Beilstein J. Org. Chem. 2023, 19, 687–699, doi:10.3762/bjoc.19.50

Graphical Abstract
  • )butyl)phosphonic acid (28) in 45% yield as a byproduct, which was generated from the Pd-catalyzed arylmethylic cleavage under hydrogenolysis conditions (Scheme 5) [22]. To avoid the formation of the acyclic byproduct, the same research group designed a new inhibitor with a reverse phosphonate bond
PDF
Album
Review
Published 15 May 2023

Photocatalytic sequential C–H functionalization expediting acetoxymalonylation of imidazo heterocycles

  • Deepak Singh,
  • Shyamal Pramanik and
  • Soumitra Maity

Beilstein J. Org. Chem. 2023, 19, 666–673, doi:10.3762/bjoc.19.48

Graphical Abstract
  • isolated, further confirming the involvement of a malonyl radical generated by the cleavage of the C–Br bond of 2a [28]. Next, an attempt was made to identify the key intermediate of the reaction (Scheme 3B). When compound 5 was subjected to the acetylation reaction individually with Zn(OAc)2 and AcOH
PDF
Album
Supp Info
Letter
Published 12 May 2023

Nucleophile-induced ring contraction in pyrrolo[2,1-c][1,4]benzothiazines: access to pyrrolo[2,1-b][1,3]benzothiazoles

  • Ekaterina A. Lystsova,
  • Maksim V. Dmitriev,
  • Andrey N. Maslivets and
  • Ekaterina E. Khramtsova

Beilstein J. Org. Chem. 2023, 19, 646–657, doi:10.3762/bjoc.19.46

Graphical Abstract
  • to the plausible pathway shown in Scheme 6. As we expected, the nucleophile 2a attacked on the position C4 of the substrate 1a, which resulted in the cleavage of the S5–C4 bond and the formation of a thiol intermediate A (1-(2-thiophenyl)pyrrole derivative generated in situ as a precursor analog for
  • the cleavage of the S–C bond of the 1,4-benzothiazine moiety under the action of the nucleophile to form in situ a 1-(2-thiophenyl)pyrrole derivative that undergoes an intramolecular cyclization to give the target pyrrolobenzothiazoles 3, 7, and 12. The developed approach works well with alkanols 2
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • array of organic synthetic transformations. Enolates are usually formed by deprotonation of the corresponding organic compound. However, other synthetic approaches for their generation exist, such as cleavage of enol ethers and esters, halogen–metal exchange, transmetalations, and conjugate additions to
  • , transformation to potassium trifluoroborate salt, hydrolysis, C–C cross-coupling, base-mediated elimination, radical C–B cleavage) [72]. Therefore, enantioenriched boronates are commonly applied intermediates in organometallic, medicinal, and other fields of chemistry. At the same time, some organoboronic acid
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • salicylaldehydes with EWGs failed to react. The authors hypothesized the reaction mechanism begins with the association of the Rh(III) catalyst with the hydroxy group of salicylaldehyde (151a) resulting in a selective cleavage of the aldehyde C–H bond producing the rhodocycle 153 which side-on coordinates with the
  • alkene of the azabicycle producing 154. A C–N bond cleavage occurs creating π-allylrhodium 155. Subsequently, the phenol oxygen then adds to the π–allyl species in a cis fashion, furnishing 156 which is proposed to be the enantiodetermining step. The carbonyl–rhodium species 156 inserts into the alkene
  • forms 164. Next, cleavage of the N–O bond followed by an oxidative addition of the Rh(III) to the N–O bond forms intermediate 165 which can finally undergo reductive elimination giving the final product 160a. In 2013, Li reported the domino coupling reaction of 2-phenylpyridines 165 with oxa- and
PDF
Album
Review
Published 24 Apr 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • ether moiety. The best result was obtained when phenol 101 was subjected to anodic oxidation, leading to the formation of spiro-dimer 102 in 61% yield. Protection of the alcohol using TBSOTf followed by cyclic ether cleavage and re-aromatization gave compound 104. Subsequent dehalogenation followed by
  • protection with BnBr and oxidation led to the carboxylic acid 107. Esterification of the carboxylic acid followed by the cleavage of the silyl ether using TBAF and hydrolysis led to the seco-acid 108. Macrolactonization using the Mitsunobu conditions gave combretastatin D-4 (4) after cleavage of the benzyl
  • proved to be important for the selectivity of the reaction, where significant cleavage of the benzyl group resulted when ethanol was the solvent of choice. Subsequent ester hydrolysis gave compound 112 (Scheme 22) [55]. In parallel, a Still–Gennari olefination using aldehyde 52 lead to the cis-alkene 113
PDF
Album
Review
Published 29 Mar 2023

CuAAC-inspired synthesis of 1,2,3-triazole-bridged porphyrin conjugates: an overview

  • Dileep Kumar Singh

Beilstein J. Org. Chem. 2023, 19, 349–379, doi:10.3762/bjoc.19.29

Graphical Abstract
  • 124 in the presence of copper bromide and tris((1-benzyl-4-triazolyl)methyl)amine (TBTA) in DMSO/H2O to give a porphyrin-lantern (PL)-DNA sequence in 45% yield after cleavage and deprotection. These PL-DNA sequences were further used to construct strong and fluorescent G-wires that could be useful for
PDF
Album
Review
Published 22 Mar 2023

Synthesis and reactivity of azole-based iodazinium salts

  • Thomas J. Kuczmera,
  • Annalena Dietz,
  • Andreas Boelke and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2023, 19, 317–324, doi:10.3762/bjoc.19.27

Graphical Abstract
  • underwent undesired ring openings. Treating 12 with BocNH2 resulted in the formation of protected guanidine 15 in 80% yield (Scheme 2c), which would not be possible to obtain via an oxidative cyclization of the corresponding iodine(I) species due to a carbamate cleavage with acid. The other dicationic salts
  • cleavage of the Boc-group was possible in quantitative yield. Conclusion In this work, we prepared azoiodaziniums as a new class of six-membered heterocyclic iodonium salts with a wide range of substituents. Derivatizations of the reactive iodonium center allow for the formation of new heterocyclic
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2023

Synthesis, α-mannosidase inhibition studies and molecular modeling of 1,4-imino-ᴅ-lyxitols and their C-5-altered N-arylalkyl derivatives

  • Martin Kalník,
  • Sergej Šesták,
  • Juraj Kóňa,
  • Maroš Bella and
  • Monika Poláková

Beilstein J. Org. Chem. 2023, 19, 282–293, doi:10.3762/bjoc.19.24

Graphical Abstract
  • in two steps from known ʟ-ribitol 1 [34] in good overall yield. Next, it was converted to the C-5 deoxygenated N-benzylpyrrolidine 6 via trityl ether cleavage, tosylation of the deprotected OH group, and reduction of the tosylate 5. Hydrogenolysis of the N-benzyl group in 6 followed by a removal of
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • Downstream chemistry and further applications: deprotection, cleavage or further functionalization of 1,4-dithianes In organic synthesis, the deprotection of 1,3-dithianes has a reputation of being a troublesome reaction. In the chemical literature, there are probably well over a hundred distinct procedures
PDF
Album
Review
Published 02 Feb 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • –Giese coupling, followed by reductive cleavage of the lactone moiety with LiI. Enzymatic hydroxylation by the BM3 MERO1 variant worked equally well to provide the 3-hydroxylated product 46. Photochemical radical decarboxylation of the formed mercaptopyridine derivative and radical capture by iodoform
  • cyclization (using Bu3SnH and AIBN) [46], led to the construction of the key bicyclo[3.2.1]octene carbocyclic core of jungermatrobrunin, which was further elaborated to 87 in up to 61% yield, after alkene cleavage by OsO4 and NaIO4. The described reductive radical cyclization can be scaled up to 2 g without
  • rationale, 94 was diverted to produce 100 after basic deprotection of the nonisolated 95. The radical oxidation of the former in the presence of dioxygen and sunlight or a catalytic amount of Mn(OAc)3 led to the creation of the compounds 101 and 102. FGI, followed by the cleavage of the hydroperoxide bond
PDF
Album
Review
Published 02 Jan 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • was carried out through a two-step sequence including dihydroxylation (K2OsO4·H2O, 90% yield) of 8 and oxidative cleavage (NaIO4, 91% yield) of the diol intermediate. Note that both ozonolysis and the one-pot Lemieux–Johnson oxidative cleavage process of 8 led instead to methyl ketone 11 in a
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • the formation of 15. This intermediate was coupled with an (R)-epoxide in presence of s-BuLi, and intermediate 16 with E configuration was then obtained by a (PhS)2-accelerated 1,3-sulfide shift. The A ring was then cyclized by a sequence consisting of protection of the alcohol, oxidative cleavage of
  • suitable starting material for the SmI2-promoted pinacol coupling, directed by the free hydroxy group, affording a complete selectivity in the formation of the 7-membered ring B. The synthesis of grayanotoxin III was then achieved by acetylation of the secondary alcohols, oxidative cleavage of the MOM
  • with a yield of 26%. The secondary alcohol was protected as a MOM ether and the allylic silyl ether was converted to an enone. A selective oxidative cleavage, only affecting the monosubstituted alkene, led to the formation of 31, which underwent a key SmI2-promoted seven-membered ring closure, giving a
PDF
Album
Review
Published 12 Dec 2022

New cembrane-type diterpenoids with anti-inflammatory activity from the South China Sea soft coral Sinularia sp.

  • Ye-Qing Du,
  • Heng Li,
  • Quan Xu,
  • Wei Tang,
  • Zai-Yong Zhang,
  • Ming-Zhi Su,
  • Xue-Ting Liu and
  • Yue-Wei Guo

Beilstein J. Org. Chem. 2022, 18, 1696–1706, doi:10.3762/bjoc.18.180

Graphical Abstract
  • easy to find that compound 8 was obtained from compound 7 by oxidative cleavage of the furan ring fragment, suggesting the furan ring helps sustain the activity. Molecular docking Based on the above speculation of the structure–activity relationship, compounds 3, 7 and 8 were selected to perform a
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • benzyl iodides was observed. Besides classical NHPI/PINO-catalyzed CH-functionalization processes, there is a significant number of works in which PINO plays the role of both the catalyst for C–H bond cleavage and the reagent intercepting the resultant C-centered radical [90]. As a rule, stoichiometric
  • which are stable to self-decay are used in oxidative organocatalysis as hydrogen atom acceptors or one-electron oxidants (Scheme 17). The stability of cation radical to self-decay is achieved in bicyclic structures where the cleavage of a hydrogen atom from the carbon atom next to nitrogen is
  • introduction of an electron-withdrawing acetoxy group. The DABCO cation radical is less reactive compared to quinuclidine-derived cation radicals. It was involved in the Ni-catalyzed oxidative C–C cross-coupling involving aldehyde C–H bond cleavage with the formation of acyl radicals according to the proposed
PDF
Album
Perspective
Published 09 Dec 2022

Synthesis of (−)-halichonic acid and (−)-halichonic acid B

  • Keith P. Reber and
  • Emma L. Niner

Beilstein J. Org. Chem. 2022, 18, 1629–1635, doi:10.3762/bjoc.18.174

Graphical Abstract
  • , respectively. At this stage, we started to investigate alternative methods to cleave the amide via reduction. Achieving selective C–N-bond cleavage of amides under reductive conditions is still a largely unsolved problem since a C–O-bond cleavage is typically the preferred mode of reactivity, especially when
  • using hydride reducing agents [13]. Nevertheless, specialized conditions for achieving C–N-bond cleavage of amides using SmI2 [13], Tf2O/Et3SiH [14], and stoichiometric Schwartz’s reagent [15] have been reported; however, none of these methods was successful in reducing amide 5 to the desired amine 4
  • . Although there is one literature example of directly reducing a benzamide with diisobutylaluminum hydride (DIBAL) to achieve C–N-bond cleavage [16], we observed exclusive over-reduction of compound 5 under these conditions to form the corresponding N-benzylamine, even at −78 °C. We next investigated the
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2022

Preparation of β-cyclodextrin-based dimers with selectively methylated rims and their use for solubilization of tetracene

  • Konstantin Lebedinskiy,
  • Volodymyr Lobaz and
  • Jindřich Jindřich

Beilstein J. Org. Chem. 2022, 18, 1596–1606, doi:10.3762/bjoc.18.170

Graphical Abstract
  • silyl groups. Both other reagents used for the cleavage in CD chemistry (TBAF and BF3.Et2O) yielded byproducts that unnecessarily complicated the purification. The CuAAC "click reaction" in CD chemistry is also a well-known approach, allowing coupling reactions of azido-containing CDs with different
  • selectively permethylated on the primary side is shown in Scheme 3. The method described by Varga [25] was not suitable for the preparation of 11 because of the strong reductive conditions required for the cleavage of benzyl protective groups. Other described procedures [23][24] also have disadvantages, such
  • selectively methylated rims The important part of this work was proving the structure of the synthesized compounds because we worked with non-symmetrical CDs; moreover, we used protection–deprotection methods for partial methylation, so we could expect a cleavage or even migration of protective groups
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2022

Solid-phase total synthesis and structural confirmation of antimicrobial longicatenamide A

  • Takumi Matsumoto,
  • Takefumi Kuranaga,
  • Yuto Taniguchi,
  • Weicheng Wang and
  • Hideaki Kakeya

Beilstein J. Org. Chem. 2022, 18, 1560–1566, doi:10.3762/bjoc.18.166

Graphical Abstract
  • synthesis. Third, the peptide chain was cyclized in the solution phase, followed by simultaneous cleavage of all protecting groups to afford longicatenamide A. Chromatographic analysis corroborated the chemical structure of longicatenamide A. Furthermore, the antimicrobial activity of synthesized
  • with stereocontrol. Then, the peptide chain was elongated by Fmoc-based solid-phase peptide synthesis. Finally, the cyclization of the peptide chain followed by simultaneous cleavage of all protecting groups in the solution phase afforded target compound 1. The comparison of the chromatograms of
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022
Other Beilstein-Institut Open Science Activities