Search results

Search for "indoles" in Full Text gives 229 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis of aryl-substituted thieno[3,2-b]thiophene derivatives and their use for N,S-heterotetracene construction

  • Nadezhda S. Demina,
  • Nikita A. Kazin,
  • Nikolay A. Rasputin,
  • Roman A. Irgashev and
  • Gennady L. Rusinov

Beilstein J. Org. Chem. 2019, 15, 2678–2683, doi:10.3762/bjoc.15.261

Graphical Abstract
  • ketones were used to synthesize new N,S-heterotetracenes, namely 9H-thieno[2',3':4,5]thieno[3,2-b]indoles by their treatment with arylhydrazines in accordance with the Fischer indolization reaction. Keywords: Fiesselmann thiophene synthesis; Fischer indole synthesis; N,S-heteroacene; thieno[3,2-b
  • -substituted TT building blocks, which can be utilized for the construction of various fused systems, including N,S-heteroacenes, e.g., substituted 9H-thieno[2',3':4,5]thieno[3,2-b]indoles (TTIs) (Figure 1). Results and Discussion Continuing our previous work in which we used the Fiesselmann thiophene
  • the synthesis of aryl-substituted 9H-thieno[2',3':4,5]thieno[3,2-b]indoles. These π-conjugated ring-fused molecules are of interest as electron-rich subunits for further organic semiconductors development. An example of an earlier developed S,N-heterohexacene [13] and general structure of compounds
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • the C–H activation event to the trifluoromethylated products, as described in Scheme 63. In this case, the specific catalytic mechanism remains to be studied. In 2011, the group of Liu [123] accomplished a Pd(II)-catalyzed oxidative trifluoromethylation of indoles with TMSCF3 and PhI(OAc)2 at room
PDF
Album
Review
Published 23 Sep 2019

Cyclopropanation–ring expansion of 3-chloroindoles with α-halodiazoacetates: novel synthesis of 4-quinolone-3-carboxylic acid and norfloxacin

  • Sara Peeters,
  • Linn Neerbye Berntsen,
  • Pål Rongved and
  • Tore Bonge-Hansen

Beilstein J. Org. Chem. 2019, 15, 2156–2160, doi:10.3762/bjoc.15.212

Graphical Abstract
  • functionalization [3][4][5][6]. The metal carbene reactions with indoles have been studied for the three types of carbenoids: acceptor–acceptor [7][8][9], mono-acceptor [10] and donor–acceptor carbenoids [11][12][13][14]. Depending on the metal and the diazo compound, the chemo- and regioselectivity in the metal
  • derived from ethyl α-halodiazoacetates (X-EDA) react readily with unprotected indoles to form ethyl 3-carboxyquinoline structures (Scheme 1) [15]. The Rh carbenes derived from X-EDAs stand out from the three other types of classified carbenoids with respect to chemoselectivity in reactions with indoles
  • . These halo-acceptor carbenoids undergo cyclopropanation of N–H indoles with high selectivity, and only traces of C–H or N–H insertion products were observed. The yield of ethyl quinoline-3-carboxylate is dependent on the halogen in X-EDA (Cl: 90%, Br: 84%, I: 70%). The reaction works well for
PDF
Album
Supp Info
Letter
Published 13 Sep 2019

Regioselective Pd-catalyzed direct C1- and C2-arylations of lilolidine for the access to 5,6-dihydropyrrolo[3,2,1-ij]quinoline derivatives

  • Hai-Yun Huang,
  • Haoran Li,
  • Thierry Roisnel,
  • Jean-François Soulé and
  • Henri Doucet

Beilstein J. Org. Chem. 2019, 15, 2069–2075, doi:10.3762/bjoc.15.204

Graphical Abstract
  • functionalization of heteroarenes such as thiophenes, furans, pyrroles and indoles [14][15], this methodology has been widely applied for the preparation of new aryl-substituted heteroarenes [16][17][18][19][20][21]. Several results dealing with the C–H bond functionalization of indoles have been reported allowing
  • to prepare either α- [22][23][24][25][26][27][28][29][30][31] or β-arylated [32][33][34][35][36][37] indoles, depending on the reaction conditions. However, to the best of our knowledge, no example of regioselective α- or β-arylations via the C–H bond functionalization of lilolidine has been reported
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2019

Synthesis of benzo[d]imidazo[2,1-b]benzoselenoazoles: Cs2CO3-mediated cyclization of 1-(2-bromoaryl)benzimidazoles with selenium

  • Mio Matsumura,
  • Yuki Kitamura,
  • Arisa Yamauchi,
  • Yoshitaka Kanazawa,
  • Yuki Murata,
  • Tadashi Hyodo,
  • Kentaro Yamaguchi and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2019, 15, 2029–2035, doi:10.3762/bjoc.15.199

Graphical Abstract
  • constructing tetracyclic aromatic heterocycles containing selenium. For example, the reaction of 2-(2-iodophenyl)indoles with selenium powder in the presence of CuO as catalyst resulted in benzoselenopheno[3,2-b]indole derivatives [14]. The reaction of 2-(2-haloaryl)imidazo[1,2-a]pyridines with selenium using
PDF
Album
Supp Info
Letter
Published 26 Aug 2019

Identification of optimal fluorescent probes for G-quadruplex nucleic acids through systematic exploration of mono- and distyryl dye libraries

  • Xiao Xie,
  • Michela Zuffo,
  • Marie-Paule Teulade-Fichou and
  • Anton Granzhan

Beilstein J. Org. Chem. 2019, 15, 1872–1889, doi:10.3762/bjoc.15.183

Graphical Abstract
  • varies within the series. Our results clearly point to several structural motifs that appear advantageous for high fluorimetric response and high quantum yield of the probes. First of all, indole substituents, including core-substituted indoles, emerge as the most efficient in this sense, as demonstrated
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • , recyclable catalyst in the N-arylation of indoles [45][46]. Copper catalysts have shown exceptional enantioselectivity for reactions such as hydrosilylation, hydroboration, and heterogeneous as well as homogeneous hydrogenation [47][48][49]. Also, the copper salts found used as oxidants in a number of
PDF
Album
Review
Published 19 Jul 2019

Synthesis of ([1,2,4]triazolo[4,3-a]pyridin-3-ylmethyl)phosphonates and their benzo derivatives via 5-exo-dig cyclization

  • Aleksandr S. Krylov,
  • Artem A. Petrosian,
  • Julia L. Piterskaya,
  • Nataly I. Svintsitskaya and
  • Albina V. Dogadina

Beilstein J. Org. Chem. 2019, 15, 1563–1568, doi:10.3762/bjoc.15.159

Graphical Abstract
  • when using C,N-, N,S- and N,N-dinucleophiles. It is characterized by a selective 5-endo-dig cyclization to the corresponding five-membered rings. The obtained new compounds are of special interest due to the practical utility of the formed fused heterocycles, such as indoles [1], thiazolo[2,3-b][1,3,4
PDF
Album
Supp Info
Letter
Published 12 Jul 2019
Graphical Abstract
  • , indoles [30] or phenols [31]. Other arenes (benzene and its substituted derivatives) have not been involved in these reactions. Concerning electron-deficient allenes, bearing electron-withdrawing groups, there is only one example of a trifluoroacetic acid-promoted hydroarylation with indoles [30]. To the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2019

Azologization of serotonin 5-HT3 receptor antagonists

  • Karin Rustler,
  • Galyna Maleeva,
  • Piotr Bregestovski and
  • Burkhard König

Beilstein J. Org. Chem. 2019, 15, 780–788, doi:10.3762/bjoc.15.74

Graphical Abstract
  • developed [26]. Since then the development of 5-HT3R antagonists progressed. The first-generation antagonists are structurally categorized in three major classes: (I) carbazole derivatives (e.g., ondansetron), (II) indazoles (e.g., granisetron), and (III) indoles (e.g., dolasetron) [26][30]. Generally, 5
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2019

Catalyst-free assembly of giant tris(heteroaryl)methanes: synthesis of novel pharmacophoric triads and model sterically crowded tris(heteroaryl/aryl)methyl cation salts

  • Rodrigo Abonia,
  • Luisa F. Gutiérrez,
  • Braulio Insuasty,
  • Jairo Quiroga,
  • Kenneth K. Laali,
  • Chunqing Zhao,
  • Gabriela L. Borosky,
  • Samantha M. Horwitz and
  • Scott D. Bunge

Beilstein J. Org. Chem. 2019, 15, 642–654, doi:10.3762/bjoc.15.60

Graphical Abstract
  • State University, Kent, OH 44242, USA 10.3762/bjoc.15.60 Abstract A series of giant tris(heteroaryl)methanes are easily assembled by one-pot three-component synthesis by simple reflux in ethanol without catalyst or additives. Diversely substituted indoles (Ar1) react with quinoline aldehydes, quinolone
  • aldehydes, chromone aldehydes, and fluorene aldehydes (Ar2CHO) and coumarins (Ar3) in 1:1:1 ratio to form the corresponding tris(heteroaryl)methanes (Ar1Ar2Ar3)CH along with (Ar1Ar1Ar2)CH triads. A series of new 2:1 triads were also synthesized by coupling substituted indoles with Ar2CHO. The coupling
  • ternary heteroarylmethane-inspired hybrids by coupling diversely substituted indoles (Ar1) with quinoline aldehydes, quinolone aldehydes, chromone aldehydes, and fluorene aldehydes (Ar2CHO) and coumarins (Ar3) in 1:1:1 ratio by simple reflux in ethanol solvent to form the corresponding highly crowded tris
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2019

Mn-mediated sequential three-component domino Knoevenagel/cyclization/Michael addition/oxidative cyclization reaction towards annulated imidazo[1,2-a]pyridines

  • Olga A. Storozhenko,
  • Alexey A. Festa,
  • Delphine R. Bella Ndoutoume,
  • Alexander V. Aksenov,
  • Alexey V. Varlamov and
  • Leonid G. Voskressensky

Beilstein J. Org. Chem. 2018, 14, 3078–3087, doi:10.3762/bjoc.14.287

Graphical Abstract
  • oxidative conditions has been developed. The employment of Mn(OAc)3·2H2O or KMnO4 as stoichiometric oxidants allowed the use of a wide range of nucleophiles, such as nitromethane, (aza)indoles, pyrroles, phenols, pyrazole, indazole and diethyl malonate. The formation of the target compounds presumably
  • -(cyanomethyl)pyridinium chloride, o-hydroxybenzaldehydes, and nitromethane. Scope of the reaction of o-hydroxybenzaldehydes with N-(cyanomethyl)pyridinium chloride and indoles. a2 equiv Mn(OAc)3·2H2O was used as an oxidant at step 2; bisolated as inseparable mixture with 4; cstep 2 performed at 0 °C for 5 days
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2018

Ring-closing-metathesis-based synthesis of annellated coumarins from 8-allylcoumarins

  • Christiane Schultze and
  • Bernd Schmidt

Beilstein J. Org. Chem. 2018, 14, 2991–2998, doi:10.3762/bjoc.14.278

Graphical Abstract
  • work by Arisawa et al. [75], who reported a synthesis of indoles by RCM of sterically less encumbered enamides, we investigated the RCM of 20. Unfortunately, no conversion to the indole 22 could be observed under various conditions. Ring-closing metathesis of 19 was, in contrast, successful and
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2018

Synthesis of indole–cycloalkyl[b]pyridine hybrids via a four-component six-step tandem process

  • Muthumani Muthu,
  • Rakkappan Vishnu Priya,
  • Abdulrahman I. Almansour,
  • Raju Suresh Kumar and
  • Raju Ranjith Kumar

Beilstein J. Org. Chem. 2018, 14, 2907–2915, doi:10.3762/bjoc.14.269

Graphical Abstract
  • -oxopropanenitriles 3 were synthesized from the reaction of indoles 1 and 2-cyanoacetic acid (2) in acetic anhydride under heating conditions (Scheme 1) [73]. Subsequently the one-pot four-component reaction of 3-(1H-indol-3-yl)-3-oxopropanenitrile (3a), 4-chlorobenzaldehyde (4f), cyclododecanone (5a) and ammonium
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2018

Molecular iodine-catalyzed one-pot multicomponent synthesis of 5-amino-4-(arylselanyl)-1H-pyrazoles

  • Camila S. Pires,
  • Daniela H. de Oliveira,
  • Maria R. B. Pontel,
  • Jean C. Kazmierczak,
  • Roberta Cargnelutti,
  • Diego Alves,
  • Raquel G. Jacob and
  • Ricardo F. Schumacher

Beilstein J. Org. Chem. 2018, 14, 2789–2798, doi:10.3762/bjoc.14.256

Graphical Abstract
  • /direct selanylation is a practical and economical way to incorporate organylselanyl moieties in aryl and heteroaryl compounds avoiding the necessity of pre-functionalization, multistep synthesis and tedious work-up [4][5]. In this context, the preparation of diverse selanylated indoles and
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2018

Synthesis of aryl sulfides via radical–radical cross coupling of electron-rich arenes using visible light photoredox catalysis

  • Amrita Das,
  • Mitasree Maity,
  • Simon Malcherek,
  • Burkhard König and
  • Julia Rehbein

Beilstein J. Org. Chem. 2018, 14, 2520–2528, doi:10.3762/bjoc.14.228

Graphical Abstract
  • charge transfer using Cs2CO3 as base [41]. Two recent reports showed the synthesis of C-3 sulfenylated indoles and 3-sulfenylimidazopyridine via C–H functionalization using Rose Bengal as photocatalyst [42][43]. In general, the arylation reactions use the reductive cycle of the photocatalyst and for this
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

Synthesis of indolo[1,2-c]quinazolines from 2-alkynylaniline derivatives through Pd-catalyzed indole formation/cyclization with N,N-dimethylformamide dimethyl acetal

  • Antonio Arcadi,
  • Sandro Cacchi,
  • Giancarlo Fabrizi,
  • Francesca Ghirga,
  • Antonella Goggiamani,
  • Antonia Iazzetti and
  • Fabio Marinelli

Beilstein J. Org. Chem. 2018, 14, 2411–2417, doi:10.3762/bjoc.14.218

Graphical Abstract
  • different from the previously reported Pd-catalyzed sequential reaction of the same substrates with Ar–I, Ar–Br and ArN2+BF4−, that afforded 12-arylindolo[1,2-c]quinazolin-6(5H)-ones. Moreover, 12-unsubstituted indolo[1,2-c]quinazolines can be obtained both by reacting 2-(o-aminophenyl)indoles with DMFDMA
  • or by sequential Pd-catalyzed reaction of o-(o-aminophenylethynyl)aniline with DMFDMA. Keywords: arylboronic acids; DMFDMA; indoles; indoloquinazolines; quinazolines; Introduction Indoloquinazoline derivatives constitute an important class of compounds which exhibit a wide range of biological
  • related to hinckdentine A received increasing attention as a source of new and useful pharmaceuticals. One well-established approach is based on the elaboration of a preformed indole ring, for example through cyclocondensation of 2-(o-aminophenyl)indoles with 2-cyanobenzothiazoles [14], aldehydes [9] and
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2018

Hydroarylations by cobalt-catalyzed C–H activation

  • Rajagopal Santhoshkumar and
  • Chien-Hong Cheng

Beilstein J. Org. Chem. 2018, 14, 2266–2288, doi:10.3762/bjoc.14.202

Graphical Abstract
  • pyridine as an additive (Scheme 6) [46]. Similarly, benzothiazoles also efficiently underwent hydroheteroarylation by using suitable ligands [47]. The reaction was successfully extended to indoles and benzimidazoles 7 bearing a removable 2-pyrimidyl (2-pym) directing group with alkynes at ambient
  • ) for C–H functionalization [37]. The Co(III) catalyst was applied for the hydroarylation of alkynes with indoles 14 to form alkenes 15 with linear selectivity (Scheme 11) [53]. The reaction features a broad substrate scope including a variety of indoles, terminal and internal alkynes, mild reaction
  • limited to terminal alkynes. Additionally, they applied this methodology to design a mitochondria-targeted imaging dye from electron-withdrawing formyl-substituted indoles and alkynes. Later, Maji’s group reported an N-tert-butyl amide-directed mono- and di-alkenylation reactions using a cobalt catalyst
PDF
Album
Review
Published 29 Aug 2018

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

  • Michael K. Bogdos,
  • Emmanuel Pinard and
  • John A. Murphy

Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179

Graphical Abstract
  • identical nature of the substituents on the product. This severely limits its potential applications, and the usefulness of this protocol is likely limited to the creation of linkers or pendant groups. Benzo-fused five-membered heterocycles also find widespread use in medicinal chemistry, with indoles
  • light (Scheme 21) [66]. However, benzofurans and, most importantly, indoles are also accessible through this cascade. The authors demonstrated the synthesis of an array of different, potentially drug-like compounds. The authors also showed the accessibility of their starting materials by synthesising
PDF
Album
Review
Published 03 Aug 2018

Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis

  • Gwendal Grelier,
  • Benjamin Darses and
  • Philippe Dauban

Beilstein J. Org. Chem. 2018, 14, 1508–1528, doi:10.3762/bjoc.14.128

Graphical Abstract
  • phenanthrenes 54 in moderate to good yields (Scheme 19) [59]. Indoles also are relevant substrates for the tandem arylation with cyclic diaryl-λ3-iodanes, allowing the preparation of dibenzocarbazoles 55 in moderate yields (Scheme 20) [60]. The reaction is catalyzed simply by Pd(OAc)2 in the absence of any
  • indoles with diaryl-λ3-iodanes (Scheme 36) [75]. The reaction first involves the use of 20 mol % of CuI and 1.1 equivalents of di-tert-butylpyridine (dtbpy) to convert the indole to the C3–H arylated product. The released Ar–I building block, then, can be engaged in the subsequent step of N–H arylation by
  • adding 30 mol % of dimethylethylenediamine (DMEDA) and potassium phosphate to the same pot. Symmetrical diaryl-λ3-iodanes afford the diarylated indoles 80 with yields ranging from 41% to 67%. More significantly, whereas non-symmetrical diaryl-λ3-iodanes based on electron poor/rich aryl moieties do not
PDF
Album
Review
Published 21 Jun 2018

Atom-economical group-transfer reactions with hypervalent iodine compounds

  • Andreas Boelke,
  • Peter Finkbeiner and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2018, 14, 1263–1280, doi:10.3762/bjoc.14.108

Graphical Abstract
  • with λ3-iodanes. These methods commonly exhibit good AE for (di)arylation procedures, since only small excesses of diaryliodonium salts are necessary. In an initial study, the selective diarylation of indoles 10 using symmetrical and unsymmetrical diaryliodonium salts 1 was demonstrated (Scheme 7) [32
  • ]. A selective C–H arylation at C3 of the indole was realised under copper catalysis before the addition of a ligand and an inorganic base initiated the N-arylation with the in situ formed iodoarene. The desired diarylated indoles 11 are obtained with an AE of 46% (for R1 = R2 = H, Ar1 = Ar2 = Ph). The
  • scope of this transformation is broad, only C2-substituted indoles show poor reactivity. Furthermore, this is a rare example for good chemoselectivities in atom-efficient reaction cascades even if unsymmetrical substituted diaryliodonium salts are applied. Based on this initial procedure, an impressive
PDF
Album
Review
Published 30 May 2018

Rhodium-catalyzed C–H functionalization of heteroarenes using indoleBX hypervalent iodine reagents

  • Erwann Grenet,
  • Ashis Das,
  • Paola Caramenti and
  • Jérôme Waser

Beilstein J. Org. Chem. 2018, 14, 1208–1214, doi:10.3762/bjoc.14.102

Graphical Abstract
  • regioselectivity for the C-6 position of bipyridinones and the C-8 position of quinoline N-oxides and tolerated a broad range of functionalities, such as halogens, ethers, or trifluoromethyl groups. Keywords: C–H activation; hypervalent iodine; indoleBX; indoles; pyridinones; rhodium catalysis; Introduction
  • introduction of further heterocyclic rings, such as indoles, is particularly attractive. Most of the methods for indolylpyridinone synthesis involve a condensation cascade process to generate the pyridinone ring [4][5][6]. These methods usually require an electron-withdrawing group (nitrile, nitro, carbonyl
PDF
Album
Supp Info
Letter
Published 25 May 2018

Mannich base-connected syntheses mediated by ortho-quinone methides

  • Petra Barta,
  • Ferenc Fülöp and
  • István Szatmári

Beilstein J. Org. Chem. 2018, 14, 560–575, doi:10.3762/bjoc.14.43

Graphical Abstract
  • -1H-indole in the presence of lithium perchlorate as catalyst to afford the new 3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-ones and 3-substituted indoles. The process was then extended to isocyanides and new aminobenzofurans formed via [4 + 1] cycloaddition were isolated. Bharate et al. reported
  • on its benzylic carbon atom. Rueping et al. recently performed reactions between aza-o-QMs in situ generated from α-substituted ortho-amino benzyl alcohols 48 and substituted indoles catalysed by N-triflylphosphoramides (NTPAs) [85]. (Scheme 6) The process provided new C-2 and C-3-functionalized
  • indole polyheterocycles 49 and 50 in good yields with 90–99% ee. One of the latest publications around this topic has been reported by Deb et al. [86][87]. Various 2-(aminoalkyl)phenols or 1-(aminoalkyl)naphthols 51 were reacted with indoles under Brønsted acid catalysis resulting in 3-(α,α-diarylmethyl
PDF
Album
Review
Published 06 Mar 2018

Functionalization of N-arylglycine esters: electrocatalytic access to C–C bonds mediated by n-Bu4NI

  • Mi-Hai Luo,
  • Yang-Ye Jiang,
  • Kun Xu,
  • Yong-Guo Liu,
  • Bao-Guo Sun and
  • Cheng-Chu Zeng

Beilstein J. Org. Chem. 2018, 14, 499–505, doi:10.3762/bjoc.14.35

Graphical Abstract
  • terminal oxidants [14]. The protocol was also extended to reactions with 2-alkylquinoline [15] and phenols [16] using O2 and di-tert-butyl peroxide (DTBP) as oxidant, respectively (Scheme 1). A CuCl-catalyzed oxidative cross coupling of glycine derivatives with indoles has been developed by Hou et al
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2018

One-pot sequential synthesis of tetrasubstituted thiophenes via sulfur ylide-like intermediates

  • Jun Ki Kim,
  • Hwan Jung Lim,
  • Kyung Chae Jeong and
  • Seong Jun Park

Beilstein J. Org. Chem. 2018, 14, 243–252, doi:10.3762/bjoc.14.16

Graphical Abstract
  • center and the substituents on the sulfur atom [10]. In general, these reagents are often applied in the preparation of simple small rings [13], such as epoxides [14][15][16][17][18], cyclopropanes [19][20][21][22], aziridines [23], indoles [24], pyrroles [24], and indolines [25]. In addition, other
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2018
Other Beilstein-Institut Open Science Activities