Search results

Search for "oxidants" in Full Text gives 216 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

α-Photooxygenation of chiral aldehydes with singlet oxygen

  • Dominika J. Walaszek,
  • Magdalena Jawiczuk,
  • Jakub Durka,
  • Olga Drapała and
  • Dorota Gryko

Beilstein J. Org. Chem. 2019, 15, 2076–2084, doi:10.3762/bjoc.15.205

Graphical Abstract
  • methodologies enabling their functionalization, particularly in a stereoselective manner. Among them, asymmetric α-oxygenation of aldehydes still represents a challenging task. Most efficient methods require simultaneous use of chiral amines or Brønsted acids, and harsh oxidants like nitrosobenzene [1][2][3
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2019

Metal-free mechanochemical oxidations in Ertalyte® jars

  • Andrea Porcheddu,
  • Francesco Delogu,
  • Lidia De Luca,
  • Claudia Fattuoni and
  • Evelina Colacino

Beilstein J. Org. Chem. 2019, 15, 1786–1794, doi:10.3762/bjoc.15.172

Graphical Abstract
  • compounds under very mild conditions [6][7]. Initially used in a stoichiometric amount [8], over the last 20 years it has been exploited successfully in catalytic quantities in combination with other oxidants [9]. A diverse range of co-oxidant agents (N-chlorosuccinimide, NaOCl, Oxone®, PhIO, PhICl2, PhI
  • such as the number (up to 15 balls, 5 mm Ø) and the diameter of balls (from 3 up to 10 mm Ø), or using a different base (KHCO3 or Na2CO3) turned out to be unsuccessful. The use of other solid oxidants such as trichloroisocyanuric acid (TCCA) did not bring any advantage to the process (Scheme 3), and
  • sodium hypochlorite (NaOCl·5H2O) in the presence of a catalytic amount of a nitrosyl radical allowed developing a redox process without using any metal catalyst. With the aim to eliminate or at least reduce the use of solvents, NaOCl·5H2O, among all the oxidants tested, was the one that best fitted with
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • greener oxidants [33]. During the writing of this review, we came across some reviews on IPs, however, their coverage is limited to the imidazo[1,2-a]pyridine nucleus deriving from either a particular starting material or to one type of reaction procedure (particularly C–H activation) with literature up
  • , recyclable catalyst in the N-arylation of indoles [45][46]. Copper catalysts have shown exceptional enantioselectivity for reactions such as hydrosilylation, hydroboration, and heterogeneous as well as homogeneous hydrogenation [47][48][49]. Also, the copper salts found used as oxidants in a number of
PDF
Album
Review
Published 19 Jul 2019

Efficient synthesis of 4-substituted-ortho-phthalaldehyde analogues: toward the emergence of new building blocks

  • Clémence Moitessier,
  • Ahmad Rifai,
  • Pierre-Edouard Danjou,
  • Isabelle Mallard and
  • Francine Cazier-Dennin

Beilstein J. Org. Chem. 2019, 15, 721–726, doi:10.3762/bjoc.15.67

Graphical Abstract
  • initiated in order to evaluate the stability of the protected RO-OPA and to certify the absence of OPA contamination [20]. Two major oxidants, SeO2 and DDQ were chosen for 5-methoxy and 5-acetoxy-4,5-dihydroisobenzofuran oxidation. As illustrated in Scheme 3, the reaction occurred with both reactants but
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

Selective benzylic C–H monooxygenation mediated by iodine oxides

  • Kelsey B. LaMartina,
  • Haley K. Kuck,
  • Linda S. Oglesbee,
  • Asma Al-Odaini and
  • Nicholas C. Boaz

Beilstein J. Org. Chem. 2019, 15, 602–609, doi:10.3762/bjoc.15.55

Graphical Abstract
  • widely used in industrial processes as promoters of autoxidation in the functionalization of benzylic C–H bonds of aryl alkanes, such as in the synthesis of terephthalic acid from p-xylene [21]. Metal-free oxidants have been used in benzylic C–H to C–O functionalization. Specifically, the use of
  • hypervalent iodine oxidants to mediate benzylic C–H oxidation is one area experiencing a surge of interest [22][23][24][25][26][27][28][29][30][31][32][33]. Nonmetal-based benzylic oxidations have also been mediated by species including, but not limited to, electron deficient quinones, photoexcited organic
  • ) scaffold have been intensely studied for their ability to mediate hydrogen atom abstraction using a terminal oxidant of molecular oxygen [40][41][42][43][44][45]. NHPI has also been used in the effective C–H to C–O functionalization of benzylic positions using oxidants other than molecular oxygen including
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2019

Intramolecular cascade annulation triggered by rhodium(III)-catalyzed sequential C(sp2)–H activation and C(sp3)–H amination

  • Liangliang Song,
  • Guilong Tian,
  • Johan Van der Eycken and
  • Erik V. Van der Eycken

Beilstein J. Org. Chem. 2019, 15, 571–576, doi:10.3762/bjoc.15.52

Graphical Abstract
  • -catalyzed intramolecular annulation of alkyne-tethered hydroxamic esters for the synthesis of isoquinolones and pyridines without using external oxidants (Scheme 1a) [22]. Recently, we reported an intramolecular annulation of benzamides to synthesize indolizinones through RhIII-catalyzed C(sp2)–H activation
PDF
Album
Supp Info
Letter
Published 27 Feb 2019

Tandem copper and photoredox catalysis in photocatalytic alkene difunctionalization reactions

  • Nicholas L. Reed,
  • Madeline I. Herman,
  • Vladimir P. Miltchev and
  • Tehshik P. Yoon

Beilstein J. Org. Chem. 2019, 15, 351–356, doi:10.3762/bjoc.15.30

Graphical Abstract
  • photocatalyst can be coupled to the reduction of Cu(I) to Cu(0), which can be observed precipitating from solution over the course of the reaction. Copper(II) salts have been demonstrated to be convenient terminal oxidants in a variety of synthetically useful catalytic reactions [23][24][25][26]. They are
  • ) complex. We describe herein the results of this investigation, which has led to the identification of a tandem photoredox copper(II) catalytic system for the net-oxidative difunctionalization of alkenes. Results and Discussion A range of mild oxidants can oxidize copper(I) to copper(II), and the use of
  • with ground-state dioxygen to afford unstable hydroperoxy radicals that can also decompose unproductively [32][33]. Indeed, in our previous study of photocatalytic alkene difunctionalization, we found that dioxygen and similar commonly used terminal oxidants resulted in unproductive decomposition of
PDF
Album
Supp Info
Letter
Published 05 Feb 2019

Oxidative radical ring-opening/cyclization of cyclopropane derivatives

  • Yu Liu,
  • Qiao-Lin Wang,
  • Zan Chen,
  • Cong-Shan Zhou,
  • Bi-Quan Xiong,
  • Pan-Liang Zhang,
  • Chang-An Yang and
  • Quan Zhou

Beilstein J. Org. Chem. 2019, 15, 256–278, doi:10.3762/bjoc.15.23

Graphical Abstract
  • -opening, cyclization, oxidation and dehydrogenation and successfully furnished trifluoromethylthiolated 1,2-dihydronaphthalene derivatives 39 (Scheme 10) [67]. This reaction was achieved in the presence of 3.0 equiv of Na2S2O8 as the oxidants, 0.5 equiv of HMPA (N,N,N',N',N'',N
  • nitrogen heterocyles 140 under acid-free conditions and used a well-defined catalyst [Ag(II)(bipy)2S2O8] at low loadings (Scheme 37) [117]. This finding indicated that the silver pyridine complex plays an important role in single electron oxidants of cyclopropanols. In the same year, a silver-catalyzed
PDF
Album
Review
Published 28 Jan 2019

Mn-mediated sequential three-component domino Knoevenagel/cyclization/Michael addition/oxidative cyclization reaction towards annulated imidazo[1,2-a]pyridines

  • Olga A. Storozhenko,
  • Alexey A. Festa,
  • Delphine R. Bella Ndoutoume,
  • Alexander V. Aksenov,
  • Alexey V. Varlamov and
  • Leonid G. Voskressensky

Beilstein J. Org. Chem. 2018, 14, 3078–3087, doi:10.3762/bjoc.14.287

Graphical Abstract
  • oxidative conditions has been developed. The employment of Mn(OAc)3·2H2O or KMnO4 as stoichiometric oxidants allowed the use of a wide range of nucleophiles, such as nitromethane, (aza)indoles, pyrroles, phenols, pyrazole, indazole and diethyl malonate. The formation of the target compounds presumably
  • screening of the oxidants revealed, that the use of molecular iodine gave the desired product with 27% yield (Table 1, entry 4), while employment of NaOCl, NaIO4, MnO2, H2O2, or CuI/TBHP was not effective and led to the formation of complex mixtures (Table 1, entries 5–9), and use of CAN did not promote the
  • conclusion, we have developed a practical route towards substituted chromenoimidazopyridines through a sequential three-component domino Knoevenagel/cyclization/Michael addition/oxidative cyclization reaction, employing cheap and abundant oxidants. The discovered process works in a broad substrate scope with
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2018

DABCO- and DBU-promoted one-pot reaction of N-sulfonyl ketimines with Morita–Baylis–Hillman carbonates: a sequential approach to (2-hydroxyaryl)nicotinate derivatives

  • Soumitra Guin,
  • Raman Gupta,
  • Debashis Majee and
  • Sampak Samanta

Beilstein J. Org. Chem. 2018, 14, 2771–2778, doi:10.3762/bjoc.14.254

Graphical Abstract
  • as the requirement of high temperatures or use of strong oxidants (H2O2, oxone, K2S2O8, TBHP, PIDA, NHPI etc.) that are not much compatible with functionality, precluding late-stage functionalization. Moreover, the scope of substitution on the pyridine ring is limited which in turn hampers the
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2018

Transition metal-free oxidative and deoxygenative C–H/C–Li cross-couplings of 2H-imidazole 1-oxides with carboranyl lithium as an efficient synthetic approach to azaheterocyclic carboranes

  • Lidia A. Smyshliaeva,
  • Mikhail V. Varaksin,
  • Pavel A. Slepukhin,
  • Oleg N. Chupakhin and
  • Valery N. Charushin

Beilstein J. Org. Chem. 2018, 14, 2618–2626, doi:10.3762/bjoc.14.240

Graphical Abstract
  • reaction of 2,2-dimethyl-4-phenyl-2H-imidazole 1-oxide (1a) with carboranyllithium 2. The experiments performed have shown effects of the used oxidants, temperature regime, and exposure time after addition of an oxidant into the reaction mixture. As a result, the optimal conditions have been found to
PDF
Album
Supp Info
Letter
Published 12 Oct 2018

A novel and practical asymmetric synthesis of eptazocine hydrobromide

  • Ruipeng Li,
  • Zhenren Liu,
  • Liang Chen,
  • Jing Pan,
  • Kuaile Lin and
  • Weicheng Zhou

Beilstein J. Org. Chem. 2018, 14, 2340–2347, doi:10.3762/bjoc.14.209

Graphical Abstract
  • , entry 3). When other oxidants, such as selenium oxide and manganese dioxide, were used, even at reflux temperature, no reaction took place (Table 2, entries 4 and 5). Owing to the concern of heavy metal pollution from the metal oxidant, organic oxidants were tested. Fortunately, DDQ in dioxane could
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

A general and atom-efficient continuous-flow approach to prepare amines, amides and imines via reactive N-chloramines

  • Katherine E. Jolley,
  • Michael R. Chapman and
  • A. John Blacker

Beilstein J. Org. Chem. 2018, 14, 2220–2228, doi:10.3762/bjoc.14.196

Graphical Abstract
  • equivalents of aldehyde 17 led to 30% product formation (Table 3, entry 6). Notably, other oxidants such as H2O2 and NaOCl failed to produce any amide product. Likewise, attempts to couple morpholine in place of its N-chloro derivative reached only 19% conversion. Following the investigation of the batch
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2018

Hypervalent iodine compounds for anti-Markovnikov-type iodo-oxyimidation of vinylarenes

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Mikhail A. Syroeshkin,
  • Alexander A. Korlyukov,
  • Pavel V. Dorovatovskii,
  • Yan V. Zubavichus,
  • Gennady I. Nikishin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2018, 14, 2146–2155, doi:10.3762/bjoc.14.188

Graphical Abstract
  • the examined hypervalent iodine oxidants (PIDA, PIFA, IBX, DMP) PhI(OAc)2 proved to be the most effective; yields of iodo-oxyimides are 34–91%. A plausible reaction pathway includes the addition of an imide-N-oxyl radical to the double C=C bond and trapping of the resultant benzylic radical by iodine
  • versatile leaving group for further transformations. The involvement of the iodine in the radical reactions of styrenes is complicated by the fact that unsaturated compounds readily undergo electrophilic iodination with the addition of an external nucleophile [61][62]. The oxidants used for the preparation
  • %) was obtained using PhI(OAc)2 (Table 1, entry 2). Other iodine-based oxidants, such as PhI(OCOCF3)2 (Table 1, entry 10, yield 31%), IBX (Table 1, entries 11 and 12, yield 32–54%), DMP (Table 1, entries 13–14, yield 52%), showed less efficacy in this process. Peroxide oxidants, such as TBHP, TBAI/TBHP
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2018

Cobalt-catalyzed peri-selective alkoxylation of 1-naphthylamine derivatives

  • Jiao-Na Han,
  • Cong Du,
  • Xinju Zhu,
  • Zheng-Long Wang,
  • Yue Zhu,
  • Zhao-Yang Chu,
  • Jun-Long Niu and
  • Mao-Ping Song

Beilstein J. Org. Chem. 2018, 14, 2090–2097, doi:10.3762/bjoc.14.183

Graphical Abstract
  • effective and the alkoxylated product 3aa could be isolated in 82% yield. Next, the effect of oxidants on the reactivity was investigated, and Ag2CO3 showed a superior result compared with alternative oxidants (Table 1, entries 6–8). Moreover, DCE and HFIP as co-solvents demonstrated higher reactivity
PDF
Album
Supp Info
Letter
Published 09 Aug 2018

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

  • Michael K. Bogdos,
  • Emmanuel Pinard and
  • John A. Murphy

Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179

Graphical Abstract
  • oxidants are employed. For example, the oxidation of alcohols to carbonyls traditionally requires strong oxidants (Cr(VI) species, IBX, DMP), whereas similar reactions using photochemical methods can utilise oxygen (O2) as the oxidising agent. The oxidising agent can accept electrons either from the
PDF
Album
Review
Published 03 Aug 2018

Preparation and X-ray structure of 2-iodoxybenzenesulfonic acid (IBS) – a powerful hypervalent iodine(V) oxidant

  • Irina A. Mironova,
  • Pavel S. Postnikov,
  • Rosa Y. Yusubova,
  • Akira Yoshimura,
  • Thomas Wirth,
  • Viktor V. Zhdankin,
  • Victor N. Nemykin and
  • Mekhman S. Yusubov

Beilstein J. Org. Chem. 2018, 14, 1854–1858, doi:10.3762/bjoc.14.159

Graphical Abstract
  • product of its acetylation Dess–Martin periodinane (DMP) are the most common oxidants used for selective oxidation of alcohols to carbonyl compounds as well as for a variety of other synthetically useful oxidative transformations [10][11]. IBX and DMP are mild oxidants with a relatively low reactivity
  • (1)···O(12) fragment. Manual separation of organic crystals of 6-K from inorganic salts resulting from reduction of Oxone is a time-consuming, impractical procedure. Therefore, we investigated the use of oxidants different from Oxone for the oxidation of sodium 2-iodobenzenesulfonate (5). It is known
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2018

Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes

  • Xiang Li,
  • Pinhong Chen and
  • Guosheng Liu

Beilstein J. Org. Chem. 2018, 14, 1813–1825, doi:10.3762/bjoc.14.154

Graphical Abstract
  • ) reagents have been well-developed and widely utilized in functionalization of alkenes, however, generally either stoichiometric amounts of iodine(III) reagents are required or stoichiometric oxidants such as mCPBA are employed to in situ generate iodine(III) species. In this review, recent developments of
  • the overlap of the 5p orbital of iodine atom with the orbitals of two ligands (Figure 1) [9]. The chemistry of hypervalent iodine(III) reagents is now a well-established area in organic chemistry. They are efficient oxidants in many synthetic transformations, such as oxidation of alcohols and phenols
  • products. In addition, inorganic oxidants and peracetic acids can be used as oxidants as well. In 2005, the Ochiai and Kita groups demonstrated that m-chloroperbenzoic acid (mCPBA) was a better choice for the in situ generation of hypervalent iodine reagents through oxidation of iodoarenes [37][38]. Based
PDF
Album
Review
Published 18 Jul 2018

Synthesis of spirocyclic scaffolds using hypervalent iodine reagents

  • Fateh V. Singh,
  • Priyanka B. Kole,
  • Saeesh R. Mangaonkar and
  • Samata E. Shetgaonkar

Beilstein J. Org. Chem. 2018, 14, 1778–1805, doi:10.3762/bjoc.14.152

Graphical Abstract
  • using iodoarenes as precatalyst in the presence of terminal oxidants. In addition, this review highlights various stereoselective spirocyclizations using chiral hypervalent iodine reagents. Finally, the recent applications of hypervalent iodine reagents in natural product synthesis are also covered. The
PDF
Album
Review
Published 17 Jul 2018

Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles

  • Dennis Hiltrop,
  • Steffen Cychy,
  • Karina Elumeeva,
  • Wolfgang Schuhmann and
  • Martin Muhler

Beilstein J. Org. Chem. 2018, 14, 1428–1435, doi:10.3762/bjoc.14.120

Graphical Abstract
  • acid, mesoxalic acid and 1,3-dihydroxyacetone (DHA). These products are conventionally obtained by oxidation using rather unselective oxidants. Especially DHA is of great interest due to its use in the cosmetic industry, as a precursor for further value-added fine chemicals [9] and as a monomer for
PDF
Album
Supp Info
Letter
Published 12 Jun 2018

Atom-economical group-transfer reactions with hypervalent iodine compounds

  • Andreas Boelke,
  • Peter Finkbeiner and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2018, 14, 1263–1280, doi:10.3762/bjoc.14.108

Graphical Abstract
  • this “green” reaction parameter. To overcome this obstacle, promising approaches are the use of iodoarenes as precatalysts in combination with external co-oxidants and the utilization of specific hypervalent iodine compounds (polymer-supported as well as non-polymeric species), whose reduced forms are
PDF
Album
Review
Published 30 May 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
  • Dev [37]. The selenium dioxide oxidation of 5H-benzo[7]annulene (15) furnished not only 4,5-benzotropone (11; 27%) but also 2,3-benzotropone (12; 13%, Scheme 2). Pomerantz and Swei [51] investigated the oxidation of benzotropylium cation 16 with several oxidants. The oxidants used and results obtained
PDF
Album
Review
Published 23 May 2018

Hypervalent iodine(III)-mediated decarboxylative acetoxylation at tertiary and benzylic carbon centers

  • Kensuke Kiyokawa,
  • Daichi Okumatsu and
  • Satoshi Minakata

Beilstein J. Org. Chem. 2018, 14, 1046–1050, doi:10.3762/bjoc.14.92

Graphical Abstract
  • amounts of heavy metal oxidants under high-temperature conditions [14][15]. Because these oxidants are typically highly toxic, their use has remained limited in organic synthesis. Barton et al. reported on the development of a practical method for the decarboxylative hydroxylation using thiohydroxamate
  • operation, and the use of readily available and environmentally friendly oxidants. However, despite the great potential of this approach with respect to a decarboxylative C–O bond-forming reaction, the oxidation system was only applied to reactions of uronic acids and α-amino acids [22][23][24], and further
  • by examining the decarboxylative acetoxylation of 3-(4-bromophenyl)-2,2-dimethylpropanoic acid (1a) using PhI(OAc)2 and I2 as oxidants. When the reaction was conducted in AcOH, the corresponding acetate 2a was obtained in low yield, and substantial amounts of the starting material were recovered
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2018

Hypervalent iodine-mediated Ritter-type amidation of terminal alkenes: The synthesis of isoxazoline and pyrazoline cores

  • Sang Won Park,
  • Soong-Hyun Kim,
  • Jaeyoung Song,
  • Ga Young Park,
  • Darong Kim,
  • Tae-Gyu Nam and
  • Ki Bum Hong

Beilstein J. Org. Chem. 2018, 14, 1028–1033, doi:10.3762/bjoc.14.89

Graphical Abstract
  • (see Supporting Information File 1, Table S1). Upon optimization with various oxidants and additives screened, it was found that a Lewis acid additive can promote the olefin heterofunctionalization via a Ritter-type amidation using acetonitrile as both the solvent and the amine source. Interestingly
  • and PIDP (bis(tert-butylcarbonyloxy)iodobenzene) much better yields were obtained (Table 1, entries 2–4), with PhI(OAc)2 proving to be the best (Table 1, entry 5). Refluxing conditions further improved the yield (Table 1, entry 6). Additionally, other cyclic hypervalent iodine oxidants such as IBX (2
PDF
Album
Supp Info
Letter
Published 11 May 2018

Preparation, structure, and reactivity of bicyclic benziodazole: a new hypervalent iodine heterocycle

  • Akira Yoshimura,
  • Michael T. Shea,
  • Cody L. Makitalo,
  • Melissa E. Jarvi,
  • Gregory T. Rohde,
  • Akio Saito,
  • Mekhman S. Yusubov and
  • Viktor V. Zhdankin

Beilstein J. Org. Chem. 2018, 14, 1016–1020, doi:10.3762/bjoc.14.87

Graphical Abstract
  • heterocyclic ring. Benziodazoles 5 are usually prepared by the treatment of 2-iodobenzamide derivatives 4 with appropriate oxidants under mild conditions [31][32][33][34][35]. Derivatives of benziodazole can be used as reagents for various oxidative functionalizations of organic substrates [33][36]. For
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2018
Other Beilstein-Institut Open Science Activities