Search results

Search for "radical cation" in Full Text gives 159 result(s) in Beilstein Journal of Organic Chemistry.

Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

  • Awatef Ayadi,
  • Aziz El Alamy,
  • Olivier Alévêque,
  • Magali Allain,
  • Nabil Zouari,
  • Mohammed Bouachrine and
  • Abdelkrim El-Ghayoury

Beilstein J. Org. Chem. 2015, 11, 1379–1391, doi:10.3762/bjoc.11.149

Graphical Abstract
  • prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts. Keywords: azine ligand; fluoride sensing; rhenium
  • ; tetrathiafulvalene; X-ray; Introduction Tetrathiafulvalene (TTF) is known to have excellent electron-donating properties resulting in stable radical cation (TTF•+) and dication (TTF2+) species from two sequential and reversible oxidation processes. The huge interest in the synthesis of TTF and its very numerous
  • electrochemical behavior observed for L2 and its corresponding rhenium complex 3 indicate that this compounds are valuable candidates for the electrochemical formation of air-stable radical cation crystalline salts [16]. Conclusion Two multifunctional ligands which associate an electron-donating TTF unit with an
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2015

Advances in the synthesis of functionalised pyrrolotetrathiafulvalenes

  • Luke J. O’Driscoll,
  • Sissel S. Andersen,
  • Marta V. Solano,
  • Dan Bendixen,
  • Morten Jensen,
  • Troels Duedal,
  • Jess Lycoops,
  • Cornelia van der Pol,
  • Rebecca E. Sørensen,
  • Karina R. Larsen,
  • Kenneth Myntman,
  • Christian Henriksen,
  • Stinne W. Hansen and
  • Jan O. Jeppesen

Beilstein J. Org. Chem. 2015, 11, 1112–1122, doi:10.3762/bjoc.11.125

Graphical Abstract
  • been utilized in the formation of charge-transfer (CT) complexes for more than 40 years [21][22][23]. TTF (1) (Figure 1) is not aromatic according to the Hückel definition as its 14 π-electrons lack cyclic conjugation. Upon oxidation to the radical cation (2) and dication (3) states, a gain in
  • materials with applications in supramolecular chemistry, molecular electronics and as sensors. The sequential, reversible oxidation of TTF (1) to its stable radical cation (2) and dication (3) states. Structures and possible substitution positions of MPTTFs (4) and BPTTFs (5). Large-scale synthesis of 6
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2015

Regioselective synthesis of chiral dimethyl-bis(ethylenedithio)tetrathiafulvalene sulfones

  • Flavia Pop and
  • Narcis Avarvari

Beilstein J. Org. Chem. 2015, 11, 1105–1111, doi:10.3762/bjoc.11.124

Graphical Abstract
  • conformation. Cyclic voltammetry measurements indicate fully reversible oxidation in radical cation and dication species. Keywords: chirality; crystal structures; molecular materials; sulfones; tetrathiafulvalenes; Introduction Chiral tetrathiafulvalene (TTF) derivatives have been addressed for the first
  • -oxaziridines as oxidizing agent [27][28]. However, the inner BEDT-TTF sulfoxide was shown to be of only limited interest as precursor for molecular conductors, since it does not reversibly oxidize into a radical cation. This behavior is due to the moderate kinetic stability of the latter, which releases oxygen
  • to transform into BEDT-TTF. Moreover, since the inner sulfur atoms present large orbital coefficients in the HOMO, the introduction of the electron-withdrawing oxygen atom induces a massive increase of the oxidation potential from the neutral to the radical cation states. We have then hypothesized
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2015

Single-molecule conductance of a chemically modified, π-extended tetrathiafulvalene and its charge-transfer complex with F4TCNQ

  • Raúl García,
  • M. Ángeles Herranz,
  • Edmund Leary,
  • M. Teresa González,
  • Gabino Rubio Bollinger,
  • Marius Bürkle,
  • Linda A. Zotti,
  • Yoshihiro Asai,
  • Fabian Pauly,
  • Juan Carlos Cuevas,
  • Nicolás Agraït and
  • Nazario Martín

Beilstein J. Org. Chem. 2015, 11, 1068–1078, doi:10.3762/bjoc.11.120

Graphical Abstract
  • -dithiol-2-ylidene)-9,10-dihydroanthracene) which, in contrast to pristine TTF that exhibits two oxidation peaks to form the radical cation and dication species, shows only one oxidation peak involving a two electron process to form the dication state. Furthermore, the geometrical properties of exTTF are
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2015

Glycoluril–tetrathiafulvalene molecular clips: on the influence of electronic and spatial properties for binding neutral accepting guests

  • Yoann Cotelle,
  • Marie Hardouin-Lerouge,
  • Stéphanie Legoupy,
  • Olivier Alévêque,
  • Eric Levillain and
  • Piétrick Hudhomme

Beilstein J. Org. Chem. 2015, 11, 1023–1036, doi:10.3762/bjoc.11.115

Graphical Abstract
  • existence of intermolecular interactions and the formation of mixed-valence and radical cation dimer states. These results clearly demonstrated the presence of an intermolecular mixed-valence phenomenon. According to these first results, the following model could be proposed in agreement with the successive
  • ]catenane [53], cucubit[8]uril [54] or self-assembled cages [55] which facilitate the formation of TTF dimers. Studying the glycoluril-based molecular clip 15 presenting also TTF sidewalls [56][57], Chiu et al. have observed the mixed-valence and radical cation dimer states at high concentration (10−3 M
PDF
Album
Full Research Paper
Published 17 Jun 2015

Chiroptical properties of 1,3-diphenylallene-anchored tetrathiafulvalene and its polymer synthesis

  • Masashi Hasegawa,
  • Junta Endo,
  • Seiya Iwata,
  • Toshiaki Shimasaki and
  • Yasuhiro Mazaki

Beilstein J. Org. Chem. 2015, 11, 972–979, doi:10.3762/bjoc.11.109

Graphical Abstract
  • )tetrathiafulvalenylbenzene radical cation 10•+, which was reported previously [7] (Table 2). In the spectrum of 32+, the absorption maximum at 810 nm is assigned to an electronic transition to the SOMO in the TTF•+ moieties. The value was slightly red-shifted compared with that of 10•+ (775 nm). This small bathochromic
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2015

Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

  • Yunfei Wang and
  • Yuming Zhao

Beilstein J. Org. Chem. 2015, 11, 957–965, doi:10.3762/bjoc.11.107

Graphical Abstract
  • observed at +0.82 V in the first cycle of scan, which is due to the single-electron oxidation of the dithiole moiety into the dithiolium radical cation [15][16]. In the reverse scan, a cathodic peak emerged at +0.54 V which is assigned to the bielectronic reduction of the TTFV product electrochemically
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2015

Interactions between tetrathiafulvalene units in dimeric structures – the influence of cyclic cores

  • Huixin Jiang,
  • Virginia Mazzanti,
  • Christian R. Parker,
  • Søren Lindbæk Broman,
  • Jens Heide Wallberg,
  • Karol Lušpai,
  • Adam Brincko,
  • Henrik G. Kjaergaard,
  • Anders Kadziola,
  • Peter Rapta,
  • Ole Hammerich and
  • Mogens Brøndsted Nielsen

Beilstein J. Org. Chem. 2015, 11, 930–948, doi:10.3762/bjoc.11.104

Graphical Abstract
  • structure, as in the radiaannulene 2a, communication between the two TTFs is observed in the cyclic voltammetry experiment, and the first two-electron event showed the waves diverging from each other (two stepwise oxidations) [10]. In addition, the intermediate radical cation showed an IVCT absorption at
  • -ethynylpyridine linkers. When two TTFs are closer together via an ethyne spacer (4), the two waves are rather broad. In fact, a shoulder can be seen for each wave, which indicates weak interactions between the two units, not only for generating two TTF radical cation units, but also for the final generation of
  • −1 used for these studies, the reversibility remains unchanged confirming the high stability of the formed radical cation and dication states within each TTF redox site (in further text defined as “polaron” and “bipolaron” states, respectively; see Scheme 4). The small peak separation, ΔE, between
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2015

Tuning of tetrathiafulvalene properties: versatile synthesis of N-arylated monopyrrolotetrathiafulvalenes via Ullmann-type coupling reactions

  • Vladimir A. Azov,
  • Diana Janott,
  • Dirk Schlüter and
  • Matthias Zeller

Beilstein J. Org. Chem. 2015, 11, 860–868, doi:10.3762/bjoc.11.96

Graphical Abstract
  • aromatic MPTTF conjugates were determined using cyclic voltammetry (CV) in CH2Cl2/Bu4NClO4 solution and are summarized in Table 1. The CVs of all compounds displayed two reversible oxidation waves on the cathodic scan (Figure 4) characteristic to TTFs [1], the first one leading to the radical cation and
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2015

Copper ion salts of arylthiotetrathiafulvalenes: synthesis, structure diversity and magnetic properties

  • Longfei Ma,
  • Jibin Sun,
  • Xiaofeng Lu,
  • Shangxi Zhang,
  • Hui Qi,
  • Lei Liu,
  • Yongliang Shao and
  • Xiangfeng Shao

Beilstein J. Org. Chem. 2015, 11, 850–859, doi:10.3762/bjoc.11.95

Graphical Abstract
  • –, and coexistence of planar [Cu(II)Br4]2– and tetrahedral [Cu(II)Br3]– ions. On the other hand, the TTFs show either radical cation or dication states that depend on their redox potentials. The central TTF framework on most of TTFs is nearly planar despite the charge on them, whereas the two dithiole
  • -based conducting materials are mainly produced as radical cation salts by electrochemical oxidation and CT complexes by chemical oxidation with electron acceptors [5][6]. Most Ar-S-TTFs possess redox potentials higher than that of bis(ethylenedithio)-TTF (BEDT-TTF) [33][34][35][36][37][38][39
  • potentials of 1–7 are summarized in Table 1. As reported in the following section, TTFs 1–5 have the E1/22 < 0.90 V and form the dicationic salts by reaction with CuBr2. On the contrary, the E1/22 values of 6 and 7 are higher than 0.90 V, and these two donor molecules form the radical cation salts by
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2015

Trifluoromethyl-substituted tetrathiafulvalenes

  • Olivier Jeannin,
  • Frédéric Barrière and
  • Marc Fourmigué

Beilstein J. Org. Chem. 2015, 11, 647–658, doi:10.3762/bjoc.11.73

Graphical Abstract
  • EDT-TTF-CF3 dimers and TCNQ in the solid state. A radical cation salt of EDT-TTF-CF3 is also obtained upon electrocrystallisation in the presence of the FeCl4− anion. In this salt, formulated as (EDT-TTF-CF3)(FeCl4), the (EDT-TTF-CF3)+• radical cations are associated two-by-two into centrosymmetric
  • dyads with a strong pairing of the radical species in a singlet state. Keywords: electrochemistry; electron withdrawing group (EWG); fluorine; tetrathiafulvalene (TTF); Introduction Following three decades of extensive work toward the elaboration of conducting radical cation salts from
  • tetrathiafulvalene (TTF) derivatives with electron-rich alkyl (tetramethyltetrathiafulvalene: TMTTF, tetramethyltetraselenafulvalene: TMTSF) or thioalkyl (ethylenedithiotetrathiafulvalene: EDT-TTF, bis(ethylenedithio)tetrathiafulvalene: BEDT-TTF) substituents [1], investigations of radical cation salts of
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2015

Photocatalytic nucleophilic addition of alcohols to styrenes in Markovnikov and anti-Markovnikov orientation

  • Martin Weiser,
  • Sergej Hermann,
  • Alexander Penner and
  • Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2015, 11, 568–575, doi:10.3762/bjoc.11.62

Graphical Abstract
  • inefficient back electron transfer indicated that loss of polar attraction after rapid protonation of the substrate radical anion might lead to diffusion and separation of the photocatalyst from the intermediate product-forming radical cation. If it was assumed that back electron transfer was a strongly
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2015

Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines

  • Hongnan Sun,
  • Binbin Huang,
  • Run Lin,
  • Chao Yang and
  • Wujiong Xia

Beilstein J. Org. Chem. 2015, 11, 524–529, doi:10.3762/bjoc.11.59

Graphical Abstract
  • mechanism was proposed as shown in Scheme 4. Initially, aziridine 1a might participate in single-electron transfer (SET) with the persulfate anion to render the radical cation A [32][34]. Concerted ring opening and nucleophilic addition leads to amino radical intermediate B, which is converted to the
  • -substituted and 2,3-disubstituted morpholines. Compared with the previous procedure, this reaction is conducted with a simple and inexpensive ammonium persulfate salt as the oxidant to realize the ring opening of aziridines for the reaction with haloalcohols through a radical cation intermediate pathway
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2015

Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides

  • Zhongwei Liang,
  • Song Xu,
  • Wenyan Tian and
  • Ronghua Zhang

Beilstein J. Org. Chem. 2015, 11, 425–430, doi:10.3762/bjoc.11.48

Graphical Abstract
  • undergo an oxidative or reductive quenching cycle [48][49][50]. In this mechanism, a single electron transfer (SET) from 1 to 3EY* generates the amine radical cation 4, and at the same time, 3EY* is reduced to the EY•−. In the presence of oxygen, the photoredox catalytic cycle of EY is finished via a SET
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2015

Bis(vinylenedithio)tetrathiafulvalene analogues of BEDT-TTF

  • Erdal Ertas,
  • İlknur Demirtas and
  • Turan Ozturk

Beilstein J. Org. Chem. 2015, 11, 403–415, doi:10.3762/bjoc.11.46

Graphical Abstract
  • studied and has had the largest number of radical cation salts of its CT materials investigated at very low temperature [12][21][22][23][24]. In order to improve the properties of TTF type materials, various methods have been applied, including extension of π-conjugation through double bonds [25][26][27
  • molecule [28][40]. The most notable superconductivity was observed with the radical cation salts derived from the electron-donor molecule bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) as a (BEDT-TTF)2Cu[N(CN)2]Br salt at 12.5 K (resistive onset) [24]. The tetrathiafulvalene (TTF) ring system is one of
PDF
Album
Review
Published 27 Mar 2015

Electrochemical oxidation of cholesterol

  • Jacek W. Morzycki and
  • Andrzej Sobkowiak

Beilstein J. Org. Chem. 2015, 11, 392–402, doi:10.3762/bjoc.11.45

Graphical Abstract
  • cleavage of the C3–O bond in the resulting radical cation leads to the formation of a hydroxyl radical and the steroidal carbocation. Such a mesomerically stabilized homoallylic carbocation can react with any nucleophile present in the reaction mixture. In the absence of better nucleophiles it reacts with
PDF
Album
Review
Published 25 Mar 2015

Functionalized branched EDOT-terthiophene copolymer films by electropolymerization and post-polymerization “click”-reactions

  • Miriam Goll,
  • Adrian Ruff,
  • Erna Muks,
  • Felix Goerigk,
  • Beatrice Omiecienski,
  • Ines Ruff,
  • Rafael C. González-Cano,
  • Juan T. Lopez Navarrete,
  • M. Carmen Ruiz Delgado and
  • Sabine Ludwigs

Beilstein J. Org. Chem. 2015, 11, 335–347, doi:10.3762/bjoc.11.39

Graphical Abstract
  • charged PEDOT species with an absorption of the radical cation around 890 nm. This is in accordance to literature where the PEDOT radical cation is described with an absorption maximum around 880 nm [24]. Only when approaching the second oxidation wave around +0.9 V the absorption band at 450 nm is
  • decreasing, revealing a new absorption at 780 nm which can be attributed to the radical cation formation of P3T matching the literature value [24]. To our knowledge this is one of very few examples [48][49], where a polymer blend provides the separated absorption and redox properties of the homopolymers
  • decreasing uniformly and steadily while at 830 nm a single band is ascending, which indicates the formation of the charged radical cation species. This is in agreement with our earlier data where we showed this uniform steady decrease of the band at 830 nm absorption during the oxidation for P(EDOT-co-3T
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2015

Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

  • Bichlien H. Nguyen,
  • Robert J. Perkins,
  • Jake A. Smith and
  • Kevin D. Moeller

Beilstein J. Org. Chem. 2015, 11, 280–287, doi:10.3762/bjoc.11.32

Graphical Abstract
  • ][25]. The reaction requires a careful balance between the initial condensation reaction and the oxidative step with either CAN or DDQ serving as the mediator. In the third reaction (Scheme 7), an intramolecular alcohol nucleophile was added to an olefin coupling reaction [26]. When a radical cation
  • barriers of quaternary carbon and six-membered ring formation. The use of the second nucleophile and a fast initial trapping reaction reduced the cation character of the radical cation intermediate, slowed competitive elimination reactions, and allowed for the desired quaternary carbon formation. In these
PDF
Album
Commentary
Published 23 Feb 2015

Anionic sigmatropic-electrocyclic-Chugaev cascades: accessing 12-aryl-5-(methylthiocarbonylthio)tetracenes and a related anthra[2,3-b]thiophene

  • Laurence Burroughs,
  • John Ritchie,
  • Mkhethwa Ngwenya,
  • Dilfaraz Khan,
  • William Lewis and
  • Simon Woodward

Beilstein J. Org. Chem. 2015, 11, 273–279, doi:10.3762/bjoc.11.31

Graphical Abstract
  • (ca. 800 nm) of 7a and 7j showed dielectric behaviour (σ <10−10 S cm−1) indicating that additional derivitisation and radical cation salt formation is required for the attainment of high electrical conductivity, as in the case of tetrathiotetracene [30]. Conclusion Typical [3,3]-sigmatropic
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2015

3α,5α-Cyclocholestan-6β-yl ethers as donors of the cholesterol moiety for the electrochemical synthesis of cholesterol glycoconjugates

  • Aneta M. Tomkiel,
  • Adam Biedrzycki,
  • Jolanta Płoszyńska,
  • Dorota Naróg,
  • Andrzej Sobkowiak and
  • Jacek W. Morzycki

Beilstein J. Org. Chem. 2015, 11, 162–168, doi:10.3762/bjoc.11.16

Graphical Abstract
  • an intermediate radical cation occurs, thus leading to a mesomerically stabilized homoallylic carbocation and a hydroxyl radical (Scheme 1) [2]. However, the glycosylation reaction was not very efficient due to competition between the sugar alcohol and cholesterol for the carbocation [3]. If
  • during electrochemical oxidation by cleavage of the carbon–oxygen bond in an intermediate radical-cation. For this reason, i-cholesteryl ethers seemed to be suitable donors of the cholesterol moiety for the electrochemical synthesis of cholesterol glycoconjugates. A series of i-cholesterol derivatives 6b
  • -hydroxyphenyl i-cholesteryl ether (6g) can be attributed to the electrochemical oxidation of the phenol type substituent, which is responsible for an additional peak at low potentials. The process is usually irreversible, resulting from the fast deprotonation of the primarily generated radical cation [7]. The
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015
Graphical Abstract
  • fluorination of dithioacetals 1b, 1d, and 1f is shown in Scheme 3. The fluorination reaction is initiated by electron transfer from a sulfur atom of the substrate to generate the corresponding radical cation B, which traps a fluoride ion to afford radical C. This is followed by a further oxidation to give
PDF
Album
Supp Info
Letter
Published 19 Jan 2015

An improved procedure for the preparation of Ru(bpz)3(PF6)2 via a high-yielding synthesis of 2,2’-bipyrazine

  • Danielle M. Schultz,
  • James W. Sawicki and
  • Tehshik P. Yoon

Beilstein J. Org. Chem. 2015, 11, 61–65, doi:10.3762/bjoc.11.9

Graphical Abstract
  • is an effective photocatalyst in oxidatively induced photoredox transformations where less strongly oxidizing complexes (e.g., 1) are not successful. For instance, we have reported that 2 is uniquely capable of promoting radical cation mediated Diels–Alder cycloadditions [12], radical thiol–ene
PDF
Album
Supp Info
Letter
Published 14 Jan 2015

Redox active dendronized polystyrenes equipped with peripheral triarylamines

  • Toshiki Nokami,
  • Naoki Musya,
  • Tatsuya Morofuji,
  • Keiji Takeda,
  • Masahiro Takumi,
  • Akihiro Shimizu and
  • Jun-ichi Yoshida

Beilstein J. Org. Chem. 2014, 10, 3097–3103, doi:10.3762/bjoc.10.326

Graphical Abstract
  • 9 seem to be ascribable to the interaction of the initially formed radical cation from the triarylamine moiety with a neighboring neutral triarylamine moiety, which disfavors the second electron transfer from the latter, although the details of this reaction are not clear as yet [49][50]. This is
PDF
Album
Supp Info
Letter
Published 22 Dec 2014

Recent advances in the electrochemical construction of heterocycles

  • Robert Francke

Beilstein J. Org. Chem. 2014, 10, 2858–2873, doi:10.3762/bjoc.10.303

Graphical Abstract
  • anodic oxidation of electron-rich olefins such as enol ethers 1 in methanolic solution generates radical cation 2 which can be used for a number of cyclization reactions (Scheme 2) [32][33]. Moeller et al. demonstrated that by intramolecular trapping of this highly reactive intermediate with a tethered
  • order to obtain reasonable reaction rates. When the radical cation is trapped with a hydroxy group, the use of 2,6-lutidine is sufficient. However, a stronger base such as NaOMe is needed when tosylamines are converted in order to facilitate the cyclization reaction and to suppress intermolecular
  • serves as supporting electrolyte and as fluoride source for mediation of the reaction. In absence of fluoride, the formation of the cyclization product was not observed. The authors proposed a mechanism, in which after initial one-electron oxidation the resulting radical cation 48 is attacked by a
PDF
Album
Review
Published 03 Dec 2014

Solution processable diketopyrrolopyrrole (DPP) cored small molecules with BODIPY end groups as novel donors for organic solar cells

  • Diego Cortizo-Lacalle,
  • Calvyn T. Howells,
  • Upendra K. Pandey,
  • Joseph Cameron,
  • Neil J. Findlay,
  • Anto Regis Inigo,
  • Tell Tuttle,
  • Peter J. Skabara and
  • Ifor D. W. Samuel

Beilstein J. Org. Chem. 2014, 10, 2683–2695, doi:10.3762/bjoc.10.283

Graphical Abstract
  • +0.73 V. In both cases, the first oxidation wave is assigned to the formation of the radical cation on one of the bi/terthiophene segments of the molecule. The lower oxidation potential for 10 compared to 9 is consistent with the tendency to decrease the oxidation potential when the oligothiophene chain
  • slightly less negative with increased conjugation, whilst the DPP core becomes less positive with increased conjugation in the radical cation form. The increase in conjugation allows charge to be more evenly distributed across the whole molecule. However, the inclusion of BODIPY accepting units presents a
  • compounds 9 and 10: radical anion (blue), neutral (black) and radical cation (red) geometries. Electrostatic potential charges for each unit in (2Th)2DPP and (3Th)2DPP radical anion (blue), neutral (black) and radical cation (red) geometries, as analogues of compounds 9 and 10. Frontier orbitals for radical
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2014
Other Beilstein-Institut Open Science Activities