Search results

Search for "radical cation" in Full Text gives 168 result(s) in Beilstein Journal of Organic Chemistry.

Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol

  • Miriana Kfoury,
  • David Landy,
  • Steven Ruellan,
  • Lizette Auezova,
  • Hélène Greige-Gerges and
  • Sophie Fourmentin

Beilstein J. Org. Chem. 2016, 12, 29–42, doi:10.3762/bjoc.12.5

Graphical Abstract
  • most energetically favorable conformation of inclusion complexes. Finally, the effect of encapsulation on the antioxidant properties of 1 and 2 was evaluated using the ABTS radical cation assay. Results and Discussion UV–visible competitive studies Stoichiometries and Kf values of inclusion complexes
  • ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) scavenging method was used to determine the radical scavenging potency of free and encapsulated 1 and 2. This method relies on the capacity of an antioxidant to scavenge and reduce ABTS•+ into its colorless reduced
PDF
Album
Full Research Paper
Published 08 Jan 2016

Urethane tetrathiafulvalene derivatives: synthesis, self-assembly and electrochemical properties

  • Xiang Sun,
  • Guoqiao Lai,
  • Zhifang Li,
  • Yuwen Ma,
  • Xiao Yuan,
  • Yongjia Shen and
  • Chengyun Wang

Beilstein J. Org. Chem. 2015, 11, 2343–2349, doi:10.3762/bjoc.11.255

Graphical Abstract
  • to explore the formation of the charge-transfer complexes. TTF derivates are representative electron donors, while TCNQ is a typical electron acceptor. When one equivalent of TCNQ was added to the solution of T1 in ethyl acetate, TCNQ radical anion species (TCNQ•−) and TTF radical cation species (TTF
  • +0.643 V (T2) (vs Ag/AgCl) was in the anodic window. This indicated the successive reversible oxidation of neutral TTF (TTF0) to the radical cation (TTF•+). The second oxidation at = +0.958 V (T1) and +0.973 V (T2) (vs Ag/AgCl) corresponded to the reversible oxidation of the radical cation (TTF•+) to
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2015

Photoinduced 1,2,3,4-tetrahydropyridine ring conversions

  • Baiba Turovska,
  • Henning Lund,
  • Viesturs Lūsis,
  • Anna Lielpētere,
  • Edvards Liepiņš,
  • Sergejs Beljakovs,
  • Inguna Goba and
  • Jānis Stradiņš

Beilstein J. Org. Chem. 2015, 11, 2166–2170, doi:10.3762/bjoc.11.234

Graphical Abstract
  • solution. The reaction of dioxygen (3O2) having a triplet ground state with tetrahydropyridine 1 having a singlet ground state is spin forbidden. On the other hand, the electron transfer from the organic compound to 3O2 resulting in the formation of a radical cation of the organic donor and the radical
PDF
Album
Supp Info
Letter
Published 11 Nov 2015

Supramolecular chemistry: from aromatic foldamers to solution-phase supramolecular organic frameworks

  • Zhan-Ting Li

Beilstein J. Org. Chem. 2015, 11, 2057–2071, doi:10.3762/bjoc.11.222

Graphical Abstract
  • cavity of cucurbit[8]uril (CB[8]) are highlighted. Keywords: donor–acceptor interaction; foldamer; hydrogen bond; radical cation dimerization; supramolecular organic framework; Review Childhood and growing up I was born on July 23rd, 1966 in the small, remote village of Fang-Liu (a combination of two
  • favorite. Many years later at Fudan, I initiated a project to study the potential of its radical cation stacking in controlling the folded conformation of linear molecules and two- and three-dimensional supramolecular polymers and frameworks. My life in the small town of Odense was also memorable. Its calm
  • successive intramolecular C–H····F or C–H····Cl hydrogen bonds [70]. Conjugated radical cation dimerization-driven pleated foldamers. The stacking of the radical cations of viologen or TTF were observed in 1964 and 1979 [71][72]. This stacking is typically weak. Several approaches have been developed to
PDF
Album
Review
Published 02 Nov 2015

Polythiophene and oligothiophene systems modified by TTF electroactive units for organic electronics

  • Alexander L. Kanibolotsky,
  • Neil J. Findlay and
  • Peter J. Skabara

Beilstein J. Org. Chem. 2015, 11, 1749–1766, doi:10.3762/bjoc.11.191

Graphical Abstract
  • polymer thin film revealed the splitting of the first oxidation wave during the cathodic run, which the authors attributed to a stepwise reduction from the aggregated radical cation to an intermediate mixed valence state, then further reduction to the neutral species. To decrease the difference in the
PDF
Album
Review
Published 28 Sep 2015

Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly

  • Masahiko Iyoda and
  • Masashi Hasegawa

Beilstein J. Org. Chem. 2015, 11, 1596–1613, doi:10.3762/bjoc.11.175

Graphical Abstract
  • self-aggregated in chloroform–dioxane to form a gel. TEM images of the xerogel exhibited helical molecular tapes nanometer wide and micrometer long. A cyclic voltammetry (CV) study on 2b showed the redox properties expected for Pc and TTF, and doping of 2b in CH2Cl2 with I2 produced a radical cation
  • of 40, the changes show several isosbestic points, indicating that each TTF unit is oxidized from the neutral to the radical cation (TTF•+) in a stepwise manner (Figure 15b). On the other hand, for 38 and 42, there are no isosbestic points (Figure 15a,c). For 38, a new broad peak around 1850 nm
PDF
Album
Supp Info
Review
Published 10 Sep 2015

Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis

  • David W. Manley and
  • John C. Walton

Beilstein J. Org. Chem. 2015, 11, 1570–1582, doi:10.3762/bjoc.11.173

Graphical Abstract
  • this review we describe how photoactivated SCPCs can either (i) interact with a precursor that donates an electron to the semiconductor thus generating a radical cation; or (ii) interact with an acceptor precursor that picks up an electron with production of a radical anion. The radical cations of
  • . Alternatively, *Ru(bpy)32+ acts as an oxidant by accepting an electron from a suitable donor molecule D thus creating the radical cation D+•. Successful protocols have been developed for a variety of preparations including: enantioselective α-alkylations of aldehydes with radicals derived from α-bromocarbonyl
  • where the electron can reduce an electron acceptor with a suitable redox potential to a radical anion (A–•) and/or the hole can oxidize an electron donor to the radical cation (D+•, Figure 1). Recombination, whereby the electron drops back down to the VB, occurs in competition with this in the bulk of
PDF
Album
Review
Published 09 Sep 2015

Synthesis of racemic and chiral BEDT-TTF derivatives possessing hydroxy groups and their achiral and chiral charge transfer complexes

  • Sara J. Krivickas,
  • Chiho Hashimoto,
  • Junya Yoshida,
  • Akira Ueda,
  • Kazuyuki Takahashi,
  • John D. Wallis and
  • Hatsumi Mori

Beilstein J. Org. Chem. 2015, 11, 1561–1569, doi:10.3762/bjoc.11.172

Graphical Abstract
  • due to their ability to form radical cation salts with interesting conductive and magnetic properties (Figure 1). The influence of chirality in the TTF molecules on the crystal structure and physical properties has been shown by Avarvari’s (R)-, (S)- and racemic (±)-(ethylenedithio(tetrathiafulvalene
  • molecules, and anions in the subsequent radical cation salts [20][21][22]. This may lead to improved order in the crystalline state, which in turn may help the observation of physical properties of the salts. Previously, the synthesis of racemic-2 [21][22], the preliminary synthesis of enantiopure (R,R
  • )- and (S,S)-2, and the preparation, and crystal structure of the radical cation salt α’-[(S,S)-2]2ClO4 [22] have been reported. In this article, we report the syntheses of novel racemic-1 and enantiopure (R,R)- and (S,S)-2 possessing one or two hydroxymethyl groups, and the preparations, crystal
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2015

Tetrathiafulvalene chemistry

  • Peter J. Skabara and
  • Marc Sallé

Beilstein J. Org. Chem. 2015, 11, 1528–1529, doi:10.3762/bjoc.11.167

Graphical Abstract
  • nineteen seventies [1][2][3] and since then has proved to be exceptionally popular in various fields of chemistry. This success results from the conjunction of intrinsic structural and electronic properties: i) structurally, this sulfur-rich bicyclic compound is essentially planar (at least in the radical
  • cation state) and therefore presents, as with most of its substituted derivatives, a good propensity to stack in the solid state. This parameter is favorable for efficient charge delocalization in the solid-state and it is this feature that gave birth to the first conducting and superconducting organic
PDF
Album
Editorial
Published 01 Sep 2015

Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

  • Awatef Ayadi,
  • Aziz El Alamy,
  • Olivier Alévêque,
  • Magali Allain,
  • Nabil Zouari,
  • Mohammed Bouachrine and
  • Abdelkrim El-Ghayoury

Beilstein J. Org. Chem. 2015, 11, 1379–1391, doi:10.3762/bjoc.11.149

Graphical Abstract
  • prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts. Keywords: azine ligand; fluoride sensing; rhenium
  • ; tetrathiafulvalene; X-ray; Introduction Tetrathiafulvalene (TTF) is known to have excellent electron-donating properties resulting in stable radical cation (TTF•+) and dication (TTF2+) species from two sequential and reversible oxidation processes. The huge interest in the synthesis of TTF and its very numerous
  • electrochemical behavior observed for L2 and its corresponding rhenium complex 3 indicate that this compounds are valuable candidates for the electrochemical formation of air-stable radical cation crystalline salts [16]. Conclusion Two multifunctional ligands which associate an electron-donating TTF unit with an
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2015

Advances in the synthesis of functionalised pyrrolotetrathiafulvalenes

  • Luke J. O’Driscoll,
  • Sissel S. Andersen,
  • Marta V. Solano,
  • Dan Bendixen,
  • Morten Jensen,
  • Troels Duedal,
  • Jess Lycoops,
  • Cornelia van der Pol,
  • Rebecca E. Sørensen,
  • Karina R. Larsen,
  • Kenneth Myntman,
  • Christian Henriksen,
  • Stinne W. Hansen and
  • Jan O. Jeppesen

Beilstein J. Org. Chem. 2015, 11, 1112–1122, doi:10.3762/bjoc.11.125

Graphical Abstract
  • been utilized in the formation of charge-transfer (CT) complexes for more than 40 years [21][22][23]. TTF (1) (Figure 1) is not aromatic according to the Hückel definition as its 14 π-electrons lack cyclic conjugation. Upon oxidation to the radical cation (2) and dication (3) states, a gain in
  • materials with applications in supramolecular chemistry, molecular electronics and as sensors. The sequential, reversible oxidation of TTF (1) to its stable radical cation (2) and dication (3) states. Structures and possible substitution positions of MPTTFs (4) and BPTTFs (5). Large-scale synthesis of 6
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2015

Regioselective synthesis of chiral dimethyl-bis(ethylenedithio)tetrathiafulvalene sulfones

  • Flavia Pop and
  • Narcis Avarvari

Beilstein J. Org. Chem. 2015, 11, 1105–1111, doi:10.3762/bjoc.11.124

Graphical Abstract
  • conformation. Cyclic voltammetry measurements indicate fully reversible oxidation in radical cation and dication species. Keywords: chirality; crystal structures; molecular materials; sulfones; tetrathiafulvalenes; Introduction Chiral tetrathiafulvalene (TTF) derivatives have been addressed for the first
  • -oxaziridines as oxidizing agent [27][28]. However, the inner BEDT-TTF sulfoxide was shown to be of only limited interest as precursor for molecular conductors, since it does not reversibly oxidize into a radical cation. This behavior is due to the moderate kinetic stability of the latter, which releases oxygen
  • to transform into BEDT-TTF. Moreover, since the inner sulfur atoms present large orbital coefficients in the HOMO, the introduction of the electron-withdrawing oxygen atom induces a massive increase of the oxidation potential from the neutral to the radical cation states. We have then hypothesized
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2015

Single-molecule conductance of a chemically modified, π-extended tetrathiafulvalene and its charge-transfer complex with F4TCNQ

  • Raúl García,
  • M. Ángeles Herranz,
  • Edmund Leary,
  • M. Teresa González,
  • Gabino Rubio Bollinger,
  • Marius Bürkle,
  • Linda A. Zotti,
  • Yoshihiro Asai,
  • Fabian Pauly,
  • Juan Carlos Cuevas,
  • Nicolás Agraït and
  • Nazario Martín

Beilstein J. Org. Chem. 2015, 11, 1068–1078, doi:10.3762/bjoc.11.120

Graphical Abstract
  • -dithiol-2-ylidene)-9,10-dihydroanthracene) which, in contrast to pristine TTF that exhibits two oxidation peaks to form the radical cation and dication species, shows only one oxidation peak involving a two electron process to form the dication state. Furthermore, the geometrical properties of exTTF are
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2015

Glycoluril–tetrathiafulvalene molecular clips: on the influence of electronic and spatial properties for binding neutral accepting guests

  • Yoann Cotelle,
  • Marie Hardouin-Lerouge,
  • Stéphanie Legoupy,
  • Olivier Alévêque,
  • Eric Levillain and
  • Piétrick Hudhomme

Beilstein J. Org. Chem. 2015, 11, 1023–1036, doi:10.3762/bjoc.11.115

Graphical Abstract
  • existence of intermolecular interactions and the formation of mixed-valence and radical cation dimer states. These results clearly demonstrated the presence of an intermolecular mixed-valence phenomenon. According to these first results, the following model could be proposed in agreement with the successive
  • ]catenane [53], cucubit[8]uril [54] or self-assembled cages [55] which facilitate the formation of TTF dimers. Studying the glycoluril-based molecular clip 15 presenting also TTF sidewalls [56][57], Chiu et al. have observed the mixed-valence and radical cation dimer states at high concentration (10−3 M
PDF
Album
Full Research Paper
Published 17 Jun 2015

Chiroptical properties of 1,3-diphenylallene-anchored tetrathiafulvalene and its polymer synthesis

  • Masashi Hasegawa,
  • Junta Endo,
  • Seiya Iwata,
  • Toshiaki Shimasaki and
  • Yasuhiro Mazaki

Beilstein J. Org. Chem. 2015, 11, 972–979, doi:10.3762/bjoc.11.109

Graphical Abstract
  • )tetrathiafulvalenylbenzene radical cation 10•+, which was reported previously [7] (Table 2). In the spectrum of 32+, the absorption maximum at 810 nm is assigned to an electronic transition to the SOMO in the TTF•+ moieties. The value was slightly red-shifted compared with that of 10•+ (775 nm). This small bathochromic
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2015

Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

  • Yunfei Wang and
  • Yuming Zhao

Beilstein J. Org. Chem. 2015, 11, 957–965, doi:10.3762/bjoc.11.107

Graphical Abstract
  • observed at +0.82 V in the first cycle of scan, which is due to the single-electron oxidation of the dithiole moiety into the dithiolium radical cation [15][16]. In the reverse scan, a cathodic peak emerged at +0.54 V which is assigned to the bielectronic reduction of the TTFV product electrochemically
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2015

Interactions between tetrathiafulvalene units in dimeric structures – the influence of cyclic cores

  • Huixin Jiang,
  • Virginia Mazzanti,
  • Christian R. Parker,
  • Søren Lindbæk Broman,
  • Jens Heide Wallberg,
  • Karol Lušpai,
  • Adam Brincko,
  • Henrik G. Kjaergaard,
  • Anders Kadziola,
  • Peter Rapta,
  • Ole Hammerich and
  • Mogens Brøndsted Nielsen

Beilstein J. Org. Chem. 2015, 11, 930–948, doi:10.3762/bjoc.11.104

Graphical Abstract
  • structure, as in the radiaannulene 2a, communication between the two TTFs is observed in the cyclic voltammetry experiment, and the first two-electron event showed the waves diverging from each other (two stepwise oxidations) [10]. In addition, the intermediate radical cation showed an IVCT absorption at
  • -ethynylpyridine linkers. When two TTFs are closer together via an ethyne spacer (4), the two waves are rather broad. In fact, a shoulder can be seen for each wave, which indicates weak interactions between the two units, not only for generating two TTF radical cation units, but also for the final generation of
  • −1 used for these studies, the reversibility remains unchanged confirming the high stability of the formed radical cation and dication states within each TTF redox site (in further text defined as “polaron” and “bipolaron” states, respectively; see Scheme 4). The small peak separation, ΔE, between
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2015

Tuning of tetrathiafulvalene properties: versatile synthesis of N-arylated monopyrrolotetrathiafulvalenes via Ullmann-type coupling reactions

  • Vladimir A. Azov,
  • Diana Janott,
  • Dirk Schlüter and
  • Matthias Zeller

Beilstein J. Org. Chem. 2015, 11, 860–868, doi:10.3762/bjoc.11.96

Graphical Abstract
  • aromatic MPTTF conjugates were determined using cyclic voltammetry (CV) in CH2Cl2/Bu4NClO4 solution and are summarized in Table 1. The CVs of all compounds displayed two reversible oxidation waves on the cathodic scan (Figure 4) characteristic to TTFs [1], the first one leading to the radical cation and
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2015

Copper ion salts of arylthiotetrathiafulvalenes: synthesis, structure diversity and magnetic properties

  • Longfei Ma,
  • Jibin Sun,
  • Xiaofeng Lu,
  • Shangxi Zhang,
  • Hui Qi,
  • Lei Liu,
  • Yongliang Shao and
  • Xiangfeng Shao

Beilstein J. Org. Chem. 2015, 11, 850–859, doi:10.3762/bjoc.11.95

Graphical Abstract
  • –, and coexistence of planar [Cu(II)Br4]2– and tetrahedral [Cu(II)Br3]– ions. On the other hand, the TTFs show either radical cation or dication states that depend on their redox potentials. The central TTF framework on most of TTFs is nearly planar despite the charge on them, whereas the two dithiole
  • -based conducting materials are mainly produced as radical cation salts by electrochemical oxidation and CT complexes by chemical oxidation with electron acceptors [5][6]. Most Ar-S-TTFs possess redox potentials higher than that of bis(ethylenedithio)-TTF (BEDT-TTF) [33][34][35][36][37][38][39
  • potentials of 1–7 are summarized in Table 1. As reported in the following section, TTFs 1–5 have the E1/22 < 0.90 V and form the dicationic salts by reaction with CuBr2. On the contrary, the E1/22 values of 6 and 7 are higher than 0.90 V, and these two donor molecules form the radical cation salts by
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2015

Trifluoromethyl-substituted tetrathiafulvalenes

  • Olivier Jeannin,
  • Frédéric Barrière and
  • Marc Fourmigué

Beilstein J. Org. Chem. 2015, 11, 647–658, doi:10.3762/bjoc.11.73

Graphical Abstract
  • EDT-TTF-CF3 dimers and TCNQ in the solid state. A radical cation salt of EDT-TTF-CF3 is also obtained upon electrocrystallisation in the presence of the FeCl4− anion. In this salt, formulated as (EDT-TTF-CF3)(FeCl4), the (EDT-TTF-CF3)+• radical cations are associated two-by-two into centrosymmetric
  • dyads with a strong pairing of the radical species in a singlet state. Keywords: electrochemistry; electron withdrawing group (EWG); fluorine; tetrathiafulvalene (TTF); Introduction Following three decades of extensive work toward the elaboration of conducting radical cation salts from
  • tetrathiafulvalene (TTF) derivatives with electron-rich alkyl (tetramethyltetrathiafulvalene: TMTTF, tetramethyltetraselenafulvalene: TMTSF) or thioalkyl (ethylenedithiotetrathiafulvalene: EDT-TTF, bis(ethylenedithio)tetrathiafulvalene: BEDT-TTF) substituents [1], investigations of radical cation salts of
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2015

Photocatalytic nucleophilic addition of alcohols to styrenes in Markovnikov and anti-Markovnikov orientation

  • Martin Weiser,
  • Sergej Hermann,
  • Alexander Penner and
  • Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2015, 11, 568–575, doi:10.3762/bjoc.11.62

Graphical Abstract
  • inefficient back electron transfer indicated that loss of polar attraction after rapid protonation of the substrate radical anion might lead to diffusion and separation of the photocatalyst from the intermediate product-forming radical cation. If it was assumed that back electron transfer was a strongly
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2015

Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines

  • Hongnan Sun,
  • Binbin Huang,
  • Run Lin,
  • Chao Yang and
  • Wujiong Xia

Beilstein J. Org. Chem. 2015, 11, 524–529, doi:10.3762/bjoc.11.59

Graphical Abstract
  • mechanism was proposed as shown in Scheme 4. Initially, aziridine 1a might participate in single-electron transfer (SET) with the persulfate anion to render the radical cation A [32][34]. Concerted ring opening and nucleophilic addition leads to amino radical intermediate B, which is converted to the
  • -substituted and 2,3-disubstituted morpholines. Compared with the previous procedure, this reaction is conducted with a simple and inexpensive ammonium persulfate salt as the oxidant to realize the ring opening of aziridines for the reaction with haloalcohols through a radical cation intermediate pathway
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2015

Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides

  • Zhongwei Liang,
  • Song Xu,
  • Wenyan Tian and
  • Ronghua Zhang

Beilstein J. Org. Chem. 2015, 11, 425–430, doi:10.3762/bjoc.11.48

Graphical Abstract
  • undergo an oxidative or reductive quenching cycle [48][49][50]. In this mechanism, a single electron transfer (SET) from 1 to 3EY* generates the amine radical cation 4, and at the same time, 3EY* is reduced to the EY•−. In the presence of oxygen, the photoredox catalytic cycle of EY is finished via a SET
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2015

Bis(vinylenedithio)tetrathiafulvalene analogues of BEDT-TTF

  • Erdal Ertas,
  • İlknur Demirtas and
  • Turan Ozturk

Beilstein J. Org. Chem. 2015, 11, 403–415, doi:10.3762/bjoc.11.46

Graphical Abstract
  • studied and has had the largest number of radical cation salts of its CT materials investigated at very low temperature [12][21][22][23][24]. In order to improve the properties of TTF type materials, various methods have been applied, including extension of π-conjugation through double bonds [25][26][27
  • molecule [28][40]. The most notable superconductivity was observed with the radical cation salts derived from the electron-donor molecule bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) as a (BEDT-TTF)2Cu[N(CN)2]Br salt at 12.5 K (resistive onset) [24]. The tetrathiafulvalene (TTF) ring system is one of
PDF
Album
Review
Published 27 Mar 2015

Electrochemical oxidation of cholesterol

  • Jacek W. Morzycki and
  • Andrzej Sobkowiak

Beilstein J. Org. Chem. 2015, 11, 392–402, doi:10.3762/bjoc.11.45

Graphical Abstract
  • cleavage of the C3–O bond in the resulting radical cation leads to the formation of a hydroxyl radical and the steroidal carbocation. Such a mesomerically stabilized homoallylic carbocation can react with any nucleophile present in the reaction mixture. In the absence of better nucleophiles it reacts with
PDF
Album
Review
Published 25 Mar 2015
Other Beilstein-Institut Open Science Activities