Search results

Search for "electron-transfer" in Full Text gives 327 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

[3 + 2] Cycloaddition with photogenerated azomethine ylides in β-cyclodextrin

  • Margareta Sohora,
  • Leo Mandić and
  • Nikola Basarić

Beilstein J. Org. Chem. 2020, 16, 1296–1304, doi:10.3762/bjoc.16.110

Graphical Abstract
  • complex molecules and natural products [11] since the pioneering work of Kanaoka et al. [12]. Photochemical reactions of phthalimides include H-abstractions, cycloadditions and photoinduced electron transfer (PET)[13]. We became interested in the application of photochemical H-abstraction reactions
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • central role in the rapid expansion of photocatalytic methods [12]. These catalysts typically absorb light in the blue region and promote different activation modes, including photoinduced electron transfer (PET) and energy transfer (EnT), which respectively lead to the formation of open-shell and
  • photocatalysts interact with organic molecules via three main pathways: electron transfer (ET), EnT, and atom transfer (AT). In the first case (Scheme 1, box 1), the excited photocatalyst (PC*) undergoes a single-electron transfer (SET) with a suitable electron acceptor A or electron donor D. In an oxidative
  • photocatalyst PC•− and the oxidized donor D•+. Following this initial SET, a second electron transfer must occur to ensure the catalyst turnover and restore the ground state photocatalyst: PC•+ needs to be reduced by an electron donor D, whereas PC•− needs to undergo an oxidation by an electron acceptor A. In
PDF
Album
Review
Published 29 May 2020

Synthesis and properties of tetrathiafulvalenes bearing 6-aryl-1,4-dithiafulvenes

  • Aya Yoshimura,
  • Hitoshi Kimura,
  • Kohei Kagawa,
  • Mayuka Yoshioka,
  • Toshiki Itou,
  • Dhananjayan Vasu,
  • Takashi Shirahata,
  • Hideki Yorimitsu and
  • Yohji Misaki

Beilstein J. Org. Chem. 2020, 16, 974–981, doi:10.3762/bjoc.16.86

Graphical Abstract
  • technique was applied [44]. As a result, the observed redox waves of 1a matched the simulated waves (Table 2). It was indicated that the redox wave at +0.10 V was due to an overlap of the sequential two stages of the one- and two-electron transfer waves at +0.07 and +0.12 V, while the other waves
  • corresponded to one-electron transfer processes. The simulation results of 1a also showed that the redox wave simulated at +0.020 V might have been derived from the central TTF moiety because of the close ΔE values (+0.40 V for 1a and +0.46 V for TTF). The same discussion was applied to 1b. In addition, the
  • (Table 2). The comparison of the peak currents of each wave indicated that the redox wave observed at +0.09 V involved a two-electron transfer, while the redox waves observed at −0.05 and +0.49 V corresponded to one-electron transfer processes (see the differential pulse voltammetry (DPV) in Supporting
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • , 68502-100, Brazil 10.3762/bjoc.16.83 Abstract In this review we present relevant and recent applications of porphyrin derivatives as photocatalysts in organic synthesis, involving both single electron transfer (SET) and energy transfer (ET) mechanistic approaches. We demonstrate that these highly
  • adequate tuning of the porphyrin properties can enable them to absorb light in almost all of the UV–vis spectral range. Porphyrins also have elevated molar absorptivity (ca 105 L·mol−1·cm−1) and appropriate electronic levels for both energy transfer (ET) and single electron transfer (SET) in many
  • porphyrin is in the triplet excited state, two distinct processes can be observed: a) single electron transfer (SET); and b) energy transfer (Figure 2) [12][13][14]. The first involves the exchange of electrons between the porphyrin and the substrate by an oxidative or reductive process, and the second
PDF
Album
Review
Published 06 May 2020

Cation-induced ring-opening and oxidation reaction of photoreluctant spirooxazine–quinolizinium conjugates

  • Phil M. Pithan,
  • Sören Steup and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2020, 16, 904–916, doi:10.3762/bjoc.16.82

Graphical Abstract
  • -step electron transfer from the merocyanine to the metal cations, which acted as electron acceptors. Similarly, Malatesta et al. found that the thermal dark reaction of spironaphthoxazines in the presence of a suitable electron acceptor, such as 7,7,8,8-tetracyanoquinodimethane, gave the corresponding
  • naphthoxazole derivatives as a result of electron-transfer processes [76]. To compare our results with the literature data, we performed a corresponding control experiment under the exclusion of oxygen. Thus, upon the addition of Cu2+ to 3a, the oxazole 4a was formed in the same manner as under aerobic
  • conditions, indicating an electron transfer from a reaction intermediate to the copper ions. In addition, we tested whether 4a may also be formed upon the addition of the previously not employed Fe3+ ion as this also acts as a strong electron acceptor (Figure 6B). Indeed, the addition of Fe3+ to 3a resulted
PDF
Album
Supp Info
Full Research Paper
Published 05 May 2020

Copper catalysis with redox-active ligands

  • Agnideep Das,
  • Yufeng Ren,
  • Cheriehan Hessin and
  • Marine Desage-El Murr

Beilstein J. Org. Chem. 2020, 16, 858–870, doi:10.3762/bjoc.16.77

Graphical Abstract
  • electron transfer. This review aims to present the latest results in the area of copper-based cooperative catalysis with redox-active ligands. Keywords: bioinspired catalysis; biomimetic copper complexes; cooperative catalysis; redox-active ligands; redox catalysis; Introduction Interaction of earth
  • . Among other tasks, copper enzymes are known to be actively involved in electron transfer as exemplified by blue copper enzymes, which have captured the interest of chemists and biochemists. Copper can also cooperate with iron to perform activation of O2 and nitrogen oxides (NOx) in cytochrome c oxidases
  • 6D, in which the H-atom is transferred from the secondary benzylic sp3 carbon to the redox-active ligand, acting as a cooperative H-atom acceptor. Following a proton-coupled electron transfer (PCET) to generate 6E, the oxidized product (benzaldehyde) is released and final elimination of H2O2
PDF
Album
Review
Published 24 Apr 2020

Aldehydes as powerful initiators for photochemical transformations

  • Maria A. Theodoropoulou,
  • Nikolaos F. Nikitas and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2020, 16, 833–857, doi:10.3762/bjoc.16.76

Graphical Abstract
  • aliphatic acids and the coupling of the residual chain with various electrophiles. Metal-based catalysts are common in reactions that require a high redox potential for a single electron transfer (SET) procedure to take place. On the other hand, even if organocatalysts have lower redox potentials, they are
  • yield. The drop in the yield was insignificant in the absence of oxygen. An insignificant drop in the yield was also noticed when an electron scavenger, CuCl2, was added to the reaction mixture, excluding a single electron transfer process. When a triplet state quencher, anthracene, was added, the
PDF
Album
Review
Published 23 Apr 2020

Photocatalytic deaminative benzylation and alkylation of tetrahydroisoquinolines with N-alkylpyrydinium salts

  • David Schönbauer,
  • Carlo Sambiagio,
  • Timothy Noël and
  • Michael Schnürch

Beilstein J. Org. Chem. 2020, 16, 809–817, doi:10.3762/bjoc.16.74

Graphical Abstract
  • , electrophilic alkyl radicals were used in several transformations, such as electrophilic cross couplings under nickel catalysis, either with boronic acids [35] or different (aryl)halides [36][37][38]. Furthermore, visible light-promoted uncatalyzed electron transfer via the formation of electron donor–acceptor
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2020

Towards triptycene functionalization and triptycene-linked porphyrin arrays

  • Gemma M. Locke,
  • Keith J. Flanagan and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2020, 16, 763–777, doi:10.3762/bjoc.16.70

Graphical Abstract
  • evident linearity in these systems. Moreover, initial UV–vis and fluorescence studies show the promise of triptycene as a linker for electron transfer studies, showcasing its isolating nature. Keywords: BODIPY; Pd-catalyzed cross-coupling; porphyrins; Sonogashira cross-coupling; triptycene; Introduction
  • of π-electrons. Consequently, it is necessary to design molecules, capable of achieving an energy- and/or electron-transfer process without causing serious electronic delocalization and/or an energy sink. A key goal of recent research into multiporphyrin arrays is modulating the absorption profile
  • complexes such as 2 were synthesized by us with the purpose of conducting electron transfer studies [25]. Both Suzuki and Sonogashira cross-coupling reactions were employed to realize this new class of triptycene-linked trimeric porphyrins. The three porphyrins, or three BODIPYs in 2 were either linked
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • leading to an electron transfer to the iodine atom, thereby liberating iodide, an alkyl radical, and a radical cation of the Cu complex. Recombination of the latter radicals leads to the formation of the desired silane along with the regeneration of the active Cu species (Scheme 8). This strategy was also
PDF
Album
Review
Published 15 Apr 2020

Recent advances in photocatalyzed reactions using well-defined copper(I) complexes

  • Mingbing Zhong,
  • Xavier Pannecoucke,
  • Philippe Jubault and
  • Thomas Poisson

Beilstein J. Org. Chem. 2020, 16, 451–481, doi:10.3762/bjoc.16.42

Graphical Abstract
  • in photocatalysis using copper complexes. Their applications in various reactions, such as ATRA, reduction, oxidation, proton-coupled electron transfer, and energy transfer reactions are discussed. Keywords: ATRA reactions; copper catalysis; energy transfer; oxidation; PCET reactions; photocatalysis
  • . The use of either homoleptic or heteroleptic complexes in atom transfer radical addition (ATRA) reactions, reductions, oxidations, proton-coupled electron transfer (PCET) reactions, and reactions based on energy transfer will be discussed. 1 Homoleptic Cu(I) complexes Homoleptic complexes based on
  • ketones and furanyl ketones, for instance, with good yield. To explain the reaction outcome, the authors suggested that the [Cu(I)(dap)2]Cl catalyst acted as an electron shuttle between the halide derivative and the allylmetal reagent, precluding a direct electron transfer between the allylstannane and
PDF
Album
Review
Published 23 Mar 2020

Photophysics and photochemistry of NIR absorbers derived from cyanines: key to new technologies based on chemistry 4.0

  • Bernd Strehmel,
  • Christian Schmitz,
  • Ceren Kütahya,
  • Yulian Pang,
  • Anke Drewitz and
  • Heinz Mustroph

Beilstein J. Org. Chem. 2020, 16, 415–444, doi:10.3762/bjoc.16.40

Graphical Abstract
  • their use in applications based on sensitized photoinduced electron transfer. This can be NIR-sensitized photopolymerization resulting in formation of initiating radicals and conjugate acid [5][6][13][14][15][63][64]. Recently, the use of NIR-LEDs exhibiting high excitation intensity brought more light
  • in this field and helped to understand the function of existing intrinsic barrier in such systems comprising cationic cyanines in photoinduced electron transfer systems [65]. Furthermore, the huge amount of heat released by nonradiative deactivation of the excited state brings up to use them as
  • emission between 800–1100 nm. Such findings enforce activities to make absorbers exhibiting internal barriers in photoinduced electron transfer reactions [72] resulting in a certain white light stability under ambient light conditions. Such properties can be seen as a big benefit from a practical point of
PDF
Album
Supp Info
Review
Published 18 Mar 2020

Visible-light-induced addition of carboxymethanide to styrene from monochloroacetic acid

  • Kaj M. van Vliet,
  • Nicole S. van Leeuwen,
  • Albert M. Brouwer and
  • Bas de Bruin

Beilstein J. Org. Chem. 2020, 16, 398–408, doi:10.3762/bjoc.16.38

Graphical Abstract
  • bond by electron transfer into the C–Cl antibonding orbital (Scheme 4A), the same intermediate can be formed by fragmentation of an α-haloketyl radical (Scheme 4B). The acidic environment could lead to easier formation of this ketyl radical. Intuitively, pathway B seems most probable. The reaction in
  • (ppy)3]+ (+0.77 V vs SCE) is insufficient to oxidatively decarboxylate an acetate intermediate (≈ +1.2 V vs SCE). Unexpected electron transfer pathways can be considered, such as the self-decarboxylation that was previously observed for a [Cl3CCO2H][O2CCl3] mixture [57]. Inspired by the result above on
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2020

Copper-promoted/copper-catalyzed trifluoromethylselenolation reactions

  • Clément Ghiazza and
  • Anis Tlili

Beilstein J. Org. Chem. 2020, 16, 305–316, doi:10.3762/bjoc.16.30

Graphical Abstract
  • . Mechanistically, the authors proposed that an electron transfer took place between the copper(I) complex and ICF2CO2Et, forming, after iodine transfer, a new carbon-centered radical and a copper(II) complex. The center of the radical then shifted to the terminal carbon atom of the unsaturated compound. The latter
PDF
Album
Review
Published 03 Mar 2020

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • functionalization has been done either using transition metal catalysis or organocatalysis, through the installation of directing groups next to the targeted C–H bond, or by employing radical tactics based on single-electron transfer (SET) [15][16][17][18][19][20][21][22][23][24][25][26][27]. Although
  • into chemical energy via the generation of reactive intermediates through electron transfer reactions. A photochemical reaction is directed by the photophysical properties of an electronically excited molecule. The first vibrational equilibrated singlet excited state is S1, and it depends on both
  • electron transfer and modification of the oxidation state of the transition metal complexes. Such systems can be combined with different metals, for example, Ni, Co, Cu, Ru, Ir, etc. However, unexpectedly, copper is less toxic and can be utilized to catalyze reactions without the requirement of a ligand
PDF
Album
Review
Published 26 Feb 2020

Photoreversible stretching of a BAPTA chelator marshalling Ca2+-binding in aqueous media

  • Aurélien Ducrot,
  • Arnaud Tron,
  • Robin Bofinger,
  • Ingrid Sanz Beguer,
  • Jean-Luc Pozzo and
  • Nathan D. McClenaghan

Beilstein J. Org. Chem. 2019, 15, 2801–2811, doi:10.3762/bjoc.15.273

Graphical Abstract
  • electron-transfer reaction, while ion binding blocks this quenching pathway restoring emission. Thus, ion liberation from 1 and transfer to 3 would result in a fluorescence off–on switching of the latter. To perform the ion-transfer experiment, the fluorescent dye is loaded with one equivalent of Ca2
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2019

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • camphorsulfonate 58 as a chiral supporting electrolyte [58]. This resulted in the corresponding α-acetoxy ketones 59, with low to moderate ee values (Scheme 23). Chiral mediators Chiral mediators are substances that allow or facilitate homogeneous electron transfer from the electrode to the substrate. This could
PDF
Album
Review
Published 13 Nov 2019

Arylisoquinoline-derived organoboron dyes with a triaryl skeleton show dual fluorescence

  • Vânia F. Pais,
  • Tristan Neumann,
  • Ignacio Vayá,
  • M. Consuelo Jiménez,
  • Abel Ros and
  • Uwe Pischel

Beilstein J. Org. Chem. 2019, 15, 2612–2622, doi:10.3762/bjoc.15.254

Graphical Abstract
  • electron-transfer phenomena or two-photon absorption [32][33][34][35][36]. As part of our research program we have developed arylisoquinolines that integrate a boronic acid ester [37][38][39] or a BMes2 unit [6][40]. The presence of the boron-substituent confers interesting photophysical properties to
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2019

Small anion-assisted electrochemical potential splitting in a new series of bistriarylamine derivatives: organic mixed valency across a urea bridge and zwitterionization

  • Keishiro Tahara,
  • Tetsufumi Nakakita,
  • Alyona A. Starikova,
  • Takashi Ikeda,
  • Masaaki Abe and
  • Jun-ichi Kikuchi

Beilstein J. Org. Chem. 2019, 15, 2277–2286, doi:10.3762/bjoc.15.220

Graphical Abstract
  • intramolecular electron transfer phenomena and application in molecular devices [1][2][3][4][5]. The radical cations of bistriarylamine derivatives bis(NAr3) are well-known MV compounds having π-conjugated bridges (where NAr3 = triarylamine) [6][7][8][9][10][11][12][13][14][15][16][17][18]. These studies focused
  • used for anion recognition [27][28][29]. In the oxidized state, the enhanced acidity of NH protons can increase the strength of H-bonds and give them more dynamic properties, which can be useful for refined designs of supramolecular systems [30] and proton-coupled electron-transfer systems [31][32][33
  • uncertainty associated with the electron transfer distances in general organic MV systems [57][58]. As the IVCT bandwidth at half-height for 1b+ is broader than the high-temperature limit (47.94 × (Δυ1/2)1/2 = 4,120 cm−1) [6], 1b+ is regarded as a class II system. The HAB value for 1b+ is by a factor of 4.9
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • for product formation and a successful outcome of the reaction. In the same year, the Ritter group [52] reported a Pd-catalyzed fluorination of arylboronic acid derivatives via a Pd(II)/Pd(III) cycle (Scheme 15). A single-electron-transfer (SET) mechanism involving a well-defined Pd(III) intermediate
  • group of Van Humbeck [90] reported a selective and mild method for the C–H fluorination of azaheterocycles with Selectfluor at room temperature. In this case, a new radical mechanism was proposed that electron transfer from the heterocyclic substrate to Selectfluor eventually generates a benzylic
PDF
Album
Review
Published 23 Sep 2019

1,2,3-Triazolium macrocycles in supramolecular chemistry

  • Mastaneh Safarnejad Shad,
  • Pulikkal Veettil Santhini and
  • Wim Dehaen

Beilstein J. Org. Chem. 2019, 15, 2142–2155, doi:10.3762/bjoc.15.211

Graphical Abstract
  • helped to increase the ability of complexation of 12 with iodide [56]. 2.7. Functional molecular crystal and materials Combining anion–arene interactions and controlling the electron-transfer or charge-transfer process concerning an anionic guest by using a cyclophane is uncommon [57] but can be realized
  • . Thus, these complexes could be useful for designing functional molecular crystals and materials which can be applied for the study of photoinduced electron transfer and energy conversion towards application in the field of molecular electronics. 3. Molecular reactors Designing synthetic host systems
  • ·TCNQ]2+ complex by pre-reduction to a [TCNQ]−· anion radical in situ, and encapsulation in the host, photochemical excitation of the porphyrin unit in the reactor, photoinduced electron transfer from the excited porphyrin unit to a neutral TCNQ, giving rise to a porphyrin radical cation and a second
PDF
Album
Review
Published 12 Sep 2019

Naphthalene diimides with improved solubility for visible light photoredox catalysis

  • Barbara Reiß and
  • Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2019, 15, 2043–2051, doi:10.3762/bjoc.15.201

Graphical Abstract
  • oxidation potential of 0.38 V vs SCE [59]. Together with the reduction potential of Ered = 0.69 V and E00 = 3.25 eV for NDI 1 (vide infra), this electron transfer is clearly exergonic (ΔG = Eox − Ered − E00 = −2.2 eV). NDI 6 shows a strong and broad fluorescence in CH2Cl2 with a maximum at 640 nm and a
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2019

A review of the total syntheses of triptolide

  • Xiang Zhang,
  • Zaozao Xiao and
  • Hongtao Xu

Beilstein J. Org. Chem. 2019, 15, 1984–1995, doi:10.3762/bjoc.15.194

Graphical Abstract
  • for the generation of carbon radicals via single-electron transfer (SET). In 2016, Barriault and co-workers reported a methodology that features the utilization of dimeric gold complex [Au2(dppm)2]Cl2 and ultraviolet A (UV, 365 nm) light to direct arylation of bromide-substituted butenolides or cyclic
PDF
Album
Review
Published 22 Aug 2019

Identification of optimal fluorescent probes for G-quadruplex nucleic acids through systematic exploration of mono- and distyryl dye libraries

  • Xiao Xie,
  • Michela Zuffo,
  • Marie-Paule Teulade-Fichou and
  • Anton Granzhan

Beilstein J. Org. Chem. 2019, 15, 1872–1889, doi:10.3762/bjoc.15.183

Graphical Abstract
  • potential of dyes, rendering the photoinduced electron-transfer reaction with guanine residues in DNA energetically disfavored and resulting in higher fluorescence quantum yields. However, in the absence of redox potential data, this assumption could not be experimentally verified. Finally, we showed that
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • single-electron transfer (SET) with CuI followed by hydride abstraction/intramolecular nucleophilic addition and loss of a proton forming the desired compound 49 (Scheme 19). Cu(I)-catalyzed intramolecular oxidative C–H amidation of N-pyridylenaminones 61 for the synthesis of imidazo[1,2-a]pyridine
  • reaction, OMS-2 acted as support and an electron transfer mediator for copper in order to generate a low energy pathway for rapid electron transfer thereby minimizing the catalyst loading (Figure 4). The reaction was supposed to proceed through iodine-catalyzed Ortoleva–King reaction with the assistance of
  • not formed. Atmospheric oxygen has oxidized Cu(I) to Cu(II). This Cu(II) acts as an initiator for a single electron transfer (SET) process, to proceed the reaction with benzylamine. A regioselective synthesis of imidazo[1,2-a]pyridines was reported by the group of Kamal and Reddy [123]. They have
PDF
Album
Review
Published 19 Jul 2019
Other Beilstein-Institut Open Science Activities