Search results

Search for "carbonyl" in Full Text gives 1223 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • carbonyl compounds 168 can be achieved with N-thiophthalimides 14 and diaryl disulfides 47, respectively (Scheme 73) [104]. They remarked that the presence of B2pin2 was essential in the coupling reaction of disulfides with α,β-unsaturated carbonyl compounds 168. The sulfenylation involved a 1,4-addition
  • HCl-promoted 1,2-thiofunctionalization of aromatic alkenes. Coupling reaction of diazo compounds with N-sulfenylsuccinimides. Multicomponent reactions of disulfides with isocyanides and other nucleophiles. α-Sulfenylation and β-sulfenylation of α,β-unsaturated carbonyl compounds.
PDF
Album
Review
Published 27 Sep 2023

α-(Aminomethyl)acrylates as acceptors in radical–polar crossover 1,4-additions of dialkylzincs: insights into enolate formation and trapping

  • Angel Palillero-Cisneros,
  • Paola G. Gordillo-Guerra,
  • Fernando García-Alvarez,
  • Olivier Jackowski,
  • Franck Ferreira,
  • Fabrice Chemla,
  • Joel L. Terán and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2023, 19, 1443–1451, doi:10.3762/bjoc.19.103

Graphical Abstract
  • atom to zinc enables this SH2 process which represents a rare example of alkylzinc-group transfer to a tertiary α-carbonyl radical. The zinc enolate thus formed readily undergoes β-fragmentation unless it is trapped by electrophiles in situ. Enolates of substrates having free N–H bonds undergo
  • protodemetalation to provide ultimately the 1,4-addition adduct. In the presence of carbonyl acceptors, aldol condensation occurs providing overall a tandem 1,4-addition–aldol process. When a tert-butanesulfinyl moiety is present on the nitrogen atom, these electrophilic substitution reactions occur with good
  • carbonyl compounds to provide the corresponding zinc enolates (Scheme 1) [1][2]. While simple, this reaction offers attractive features: 1) it proceeds under mild conditions in the absence of any transition-metal catalyst; 2) the 1,4-addition step can be combined with condensation reactions of the zinc
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • ]. Later in 2003, Buchwald, Sadighi and Jurkauskas [47] succeeded in the application of [(IPr)CuCl] as NHC–Cu(I) complex to catalyze the conjugate reduction of α,β-unsaturated carbonyl compounds. In the decade following these initial reports, the field has blossomed and NHC–Cu(I) complexes have been
  • been found to be highly efficient catalysts in this transformation. Nolan and co-workers reported the catalytic activity of [Cu(IPr)Cl] in the hydrosilylation of carbonyl compounds to form silyl ethers in high yield [48][49]. A series of bis-NHC–copper complexes was synthesized and the compounds were
  • . The hydrosilylation of aryl, alkyl, and cyclic ketones could be accomplished with excellent yields (Scheme 35) [48]. In 2011, Gawley and co-worker reported an excellent reactivity and enantioselectivity of a C2-symmetric NHC–Cu(I) complex for the catalytic hydrosilylation of a variety of carbonyl
PDF
Album
Review
Published 20 Sep 2023

One-pot nucleophilic substitution–double click reactions of biazides leading to functionalized bis(1,2,3-triazole) derivatives

  • Hans-Ulrich Reissig and
  • Fei Yu

Beilstein J. Org. Chem. 2023, 19, 1399–1407, doi:10.3762/bjoc.19.101

Graphical Abstract
  • cannot rigorously exclude their formation. Compared to bis(1,2,3-triazoles) 14 and 17, compounds 20 and 21 are one step closer to the desired divalent aminopyran-substituted carbohydrate mimetics, since they already contain a free hydroxy group instead of the carbonyl group. However, their reductive
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • involved in the activation of DDQ by coordinating the carbonyl oxygen atom which leads to an increase in the oxidation activity of DDQ. Subsequently, Li et al. improved the above method, using a mixture of indium and copper salts as a catalyst, NHPI (N-hydroxyphthalimide) as a co-catalyst to achieve the
  • form the coupling product. However, this method is only applicable to cyclic ethers. In the same year, Correa et al. established a double C(sp3)–H functionalization reaction of α-amino carbonyl compounds and 2-alkyl-1,3-dioxolanes in the presence of Cu(I) (Scheme 6b) [55]. This method allows the
  • synthesis of compounds with quaternary centers and natural products with high structural complexity. In 2014, Li et al. reported a CuCl2-catalyzed cross-dehydrogenation coupling reaction of C(sp3)–H bonds adjacent to an ether oxygen and the C(sp3)–H bonds at the α-position of a carbonyl functionality in the
PDF
Album
Review
Published 06 Sep 2023

Selective construction of dispiro[indoline-3,2'-quinoline-3',3''-indoline] and dispiro[indoline-3,2'-pyrrole-3',3''-indoline] via three-component reaction

  • Ziying Xiao,
  • Fengshun Xu,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2023, 19, 1234–1242, doi:10.3762/bjoc.19.91

Graphical Abstract
  • effect. The single crystal structure of compound 3a was determined by X-ray crystallographic diffraction (Figure 1). From Figure 1 it can be seen that the two scaffolds of oxindole at neighboring positions are in trans-configuration. The ethoxycarbonyl group is also in trans-position to the carbonyl
  • showed that the carbonyl group of the dimedone does not take part in the further cyclization reaction, while the carbonyl group of the benzoyl group participated in the annulation reaction to give the pyrrolidyl ring. This result clearly indicated that the adducts of 3-phenacylideneoxindoles showed
  • dimedone moiety is also in trans-position to the carbonyl group in the neighboring oxindole scaffold. To demonstrate the synthetic value of this three-component reaction, 3-phenacylideneoxindole adducts of 1,3-cyclohexanedione were also employed in the reaction. In the presence of piperidine, the three
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2023
Graphical Abstract
  • sacrificial donors [40]. More recently, other groups have published the electrochemical hydrogenation of carbonyl compounds using more earth-abundant electrocatalysts. For instance, Siewert and co-worker used a manganese complex as an electrocatalyst for the chemoselective carbonyl hydrogenation [41
  • ]. Behrouzi et al. reported the electrochemical hydrogenation of carbonyl and amido compounds using nickel electrodes and water as the proton and electron source [42]. Furthermore, the carbonyl and amido compounds used in these electrochemical hydrogenation studies are more structurally similar to organic
  • systems and photosensitizers to enable direct electron transfer between them. In contrast to the system of Domen where the photoexcitation only occurs at the Al-SrTiO3 particle [53], the system developed by Ishitani included a second ruthenium chromophore linked the TaON particle to a ruthenium carbonyl
PDF
Album
Supp Info
Review
Published 08 Aug 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • found were intermolecular interactions between the lone pairs of either the carbonyl or sulfonyl with the other I–C bond σ* orbital, at energies of 0.70 and 0.29 kcal/mol, respectively. These interactions were presumed to have contributed to the increased stability of such ylides. X-ray crystal
PDF
Album
Review
Published 07 Aug 2023

Two new lanostanoid glycosides isolated from a Kenyan polypore Fomitopsis carnea

  • Winnie Chemutai Sum,
  • Sherif S. Ebada,
  • Didsanutda Gonkhom,
  • Cony Decock,
  • Rémy Bertrand Teponno,
  • Josphat Clement Matasyoh and
  • Marc Stadler

Beilstein J. Org. Chem. 2023, 19, 1161–1169, doi:10.3762/bjoc.19.84

Graphical Abstract
  • unsaturation in its structure. The 1H, 13C NMR, and HSQC spectral data of compound 1 (Table 1) revealed the presence of forty-three carbon resonances sorted into eight methyl, fourteen methylenes (one olefinic), ten methine and eleven unprotonated carbon atoms. This includes three carbonyl carbons at δC 177.4
  • methylene groups at δH 2.65/2.69 (H2-2') and δH 2.69/2.72 (H2-4') to an ester carbonyl (δC 172.4, C-1') and a carboxyl (δC 175.0, C-5'), respectively. In addition, both methylene groups together with a methyl singlet at δH 1.38 (s, H3-6') disclosed key HMBC correlations to a quaternary oxygenated carbon at
  • confirmation of the positions of the 3-hydroxy-3-methylglutaroyl and β-ᴅ-glucopyranosyl moieties was provided by the HMBC spectrum which exhibited key correlations from H-3 to C-1' and from H-20 (δH 2.40, td, J = 11.0, 3.5 Hz)/H-1'' (δH 5.49, d, J = 8.1 Hz) to a carbonyl carbon at δC 177.4 (C-21). Hence, their
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Synthesis of imidazo[4,5-e][1,3]thiazino[2,3-c][1,2,4]triazines via a base-induced rearrangement of functionalized imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazines

  • Dmitry B. Vinogradov,
  • Alexei N. Izmest’ev,
  • Angelina N. Kravchenko,
  • Yuri A. Strelenko and
  • Galina A. Gazieva

Beilstein J. Org. Chem. 2023, 19, 1047–1054, doi:10.3762/bjoc.19.80

Graphical Abstract
  • . however, acid 5l underwent partial transformations even under these conditions and was not isolated as individual substance. We assumed the following mechanism for the formation of products 9 (Scheme 8). Redistribution of the electron density in the acid molecule 5 after protonation of the carbonyl group
  • ][1,2,4]triazine and imidazo[4,5-e][1,3]thiazino[2,3-c][1,2,4]triazine. Thus, the signals of the corresponding protons for isomeric acids 4a and 5a appeared at δ 5.59 and 6.23 ppm, respectively, that is obviously due to a deshielding effect of the carbonyl group of the products 4a and 5a as well as its
  • closer location in structures 5 (Figure 3). In the downfield region of the 13C NMR spectra registered without proton decoupling for isomeric acids 4a and 5a, the carbon atom doublets of the carboxyl groups, carbonyl groups of thiazole (for 4a) or thiazine (for 5a) cycles, as well as multiplets of
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023
Graphical Abstract
  • carbonyl oxygen of 69 in the ternary complex, thus bringing more rigidity in the three dimensional transition state (Scheme 18) [46]. In 2021, Chen and co-workers documented a chiral phosphoric acid P17-catalyzed aza-Friedel–Crafts process between racemic 2,3-dihydroisoxazol-3-ol derivatives 76 and
  • a hydroxyquinoline-substituted aza-quaternary stereocenter in the 3 position. Most of the examples in this report involved 6-hydroxyquinoline as nucleophile whereas two examples each were presented with 5- and 7-hydroxyquinolines, respectively. Both the imine nitrogen and the carbonyl oxygen of the
PDF
Album
Review
Published 28 Jun 2023

Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach

  • Dileep Kumar Singh and
  • Rajesh Kumar

Beilstein J. Org. Chem. 2023, 19, 928–955, doi:10.3762/bjoc.19.71

Graphical Abstract
  • carbonyl carbon to form the 5-membered ring E bearing the iminium ion. Finally, N-substituted amines 67 were obtained after deprotonation/protonation, dehydration, and aromatization steps as shown in Scheme 32b. In another report, Ozaki et al. [87] used the Clauson–Kaas approach to synthesize sulfonic
PDF
Album
Review
Published 27 Jun 2023

Intermediates and shunt products of massiliachelin biosynthesis in Massilia sp. NR 4-1

  • Till Steinmetz,
  • Blaise Kimbadi Lombe and
  • Markus Nett

Beilstein J. Org. Chem. 2023, 19, 909–917, doi:10.3762/bjoc.19.69

Graphical Abstract
  • ) and a proton resonance at δH 3.73 ppm (H-16). Both H-16 and H-14 show HMBC correlations to the carbonyl C-15. It can therefore be concluded that a methyl ester function replaced the carboxylic acid function of compound 1. Measurements of the optical rotation of 2 were not possible due to the low
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2023

First synthesis of acylated nitrocyclopropanes

  • Kento Iwai,
  • Rikiya Kamidate,
  • Khimiya Wada,
  • Haruyasu Asahara and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2023, 19, 892–900, doi:10.3762/bjoc.19.67

Graphical Abstract
  • ) halogenation, and 3) ring closure (Scheme 2). β-Nitrostyrene 2 serves as an appropriate acceptor for conjugate addition by diethyl malonate (3a) to afford adduct 4a, in which the methine group flanked by two carbonyl groups is readily halogenated, and the subsequent intramolecular nucleophilic substitution by
  • was not given for the different coupling constants between diester 1a and diketone 1b’. In the 13C NMR spectrum of diester 1a, two separate signals of carbonyl groups were observed at 163.2 and 163.3 ppm, indicating that the two ester functionalities were not equivalent. Moreover, the spectrum of
  • compound 8b revealed only a single signal of a carbonyl carbon at 193.2 ppm, and a signal of a quaternary carbon at 167.0 ppm, which could not be assigned. These spectral data prompted us to reconsider the structure of compound 8b. The reaction of chlorinated nitrostyrene 2b with acetylacetone (3b) was in
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2023

Asymmetric tandem conjugate addition and reaction with carbocations on acylimidazole Michael acceptors

  • Brigita Mudráková,
  • Renata Marcia de Figueiredo,
  • Jean-Marc Campagne and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 881–888, doi:10.3762/bjoc.19.65

Graphical Abstract
  • solubility in water. Among exceptional properties belongs to easy post-transformation of acylimidazoles to common carbonyl analogs. These tunable properties allow the use of acylimidazoles in chemical biology research, which includes chemical synthesis of proteins/peptides, structure analysis, and functional
  • products [20]. A salient feature of conjugate additions of organometallic reagents is that they generate reactive metal enolates as primary products. These enolates can be used in a variety of subsequent transformations [21]. Chiral enolates generated by conjugate additions react with carbonyl compounds
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2023

A fluorescent probe for detection of Hg2+ ions constructed by tetramethyl cucurbit[6]uril and 1,2-bis(4-pyridyl)ethene

  • Xiaoqian Chen,
  • Naqin Yang,
  • Yue Ma,
  • Xinan Yang and
  • Peihua Ma

Beilstein J. Org. Chem. 2023, 19, 864–872, doi:10.3762/bjoc.19.63

Graphical Abstract
  • outside the cavity, forming a 1:1 inclusion complex with TMeQ[6]. Figure 4b shows that the hydrogen atoms on the G molecule form C–H30···O1, C–H30···O2 and C–H31···O4 hydrogen bonds with the carbonyl oxygen and carbon atoms on TMeQ[6], and the bond distances are 2.163, 2.707 and 2.228 Å, respectively. In
  • Figure 4c, the hydrogen atoms of G and the carbonyl oxygen of TMeQ[6] form C–H22···O1, C–H26···O1, C–H25···O4 and C–H27···O4 hydrogen bonds with bond distances of 2.370, 2.474, 2.564 and 2.685 Å, respectively. These interactions contribute to the formation of stable inclusion complexes. Figure 4d is a
  • one-dimensional supramolecular chain of G@TMeQ[6], which is composed of hydrogen bonds C24–H···O6 and N13–H···O6 formed by the protons on the pyridyl group outside the cavity and the carbonyl oxygen of the adjacent TMeQ[6] port. The G molecule acts as a medium for connecting two adjacent TMeQ[6]. The
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • pyridine syntheses have relied on the condensation of carbonyl compounds and amines for a very long time [11]. The classical methods for the synthesis of functionalized pyridine include the Hantzsch pyridine synthesis and the Bohlmann–Rahtz synthesis (Scheme 1a and b). Furthermore, alternative
PDF
Album
Review
Published 12 Jun 2023

Eschenmoser coupling reactions starting from primary thioamides. When do they work and when not?

  • Lukáš Marek,
  • Jiří Váňa,
  • Jan Svoboda and
  • Jiří Hanusek

Beilstein J. Org. Chem. 2023, 19, 808–819, doi:10.3762/bjoc.19.61

Graphical Abstract
  • with a α-haloketone or α-haloester II. The initially formed α-thioiminium salt III can undergo either a base-catalyzed elimination to give nitrile X and thiol IX [10][11][12] or cyclization to give a thiazole XIII or thiazolone XI depending on the substituent at the carbonyl group Y. Both side
  • lactam 2 structure involving the replacement of a quaternary carbon carrying two electron-donating methyl groups with an electron-withdrawing carbonyl group (2b → 3). The starting isoquinoline-1,3(2H,4H)-dione was prepared [31] from homophthalic acid and then brominated with NBS to give 4
  • nitrogen and carbonyl oxygen, generating both nucleophilic and electrophilic centers, i.e., a free amino group and protonated carbonyl group, which is much more prone to nucleophilic attack than a carbonyl group itself. Quantum calculations (see the left side of Figure 2) show that the relative stabilities
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2023

Facile access to 3-sulfonylquinolines via Knoevenagel condensation/aza-Wittig reaction cascade involving ortho-azidobenzaldehydes and β-ketosulfonamides and sulfones

  • Ksenia Malkova,
  • Andrey Bubyrev,
  • Stanislav Kalinin and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2023, 19, 800–807, doi:10.3762/bjoc.19.60

Graphical Abstract
  • modification of various substrates, such as 3-bromoquinolines [52][53][54][55], quinoline-3-boronic acids [56], and diazonium salts [57]. When considering general methods for the quinoline core formation, aromatic ortho-substituted carbonyl compounds attract attention as decent and easily available reagents
  • . While the ortho-amino carbonyl reagents are not always easily accessible and sometimes unstable (e.g., aminoaldehydes), both o-azidoaldehydes [58][59][60][61][62][63][64][65] and o-azidoketones [66][67][68][69] have been proved to be appropriate substrates for quinoline derivatives synthesis. Recently
  • carbonyl group deactivation. Furthermore, while implementing the protocol for 2-azidoquinoline-3-carbaldehyde (1t), a low conversion of this reagent was detected, which can be explained by the fact that 1t tends to exist in the inactive tetrazole form. In addition, our attempt to involve Boc-protected
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2023

Non-peptide compounds from Kronopolites svenhedini (Verhoeff) and their antitumor and iNOS inhibitory activities

  • Yuan-Nan Yuan,
  • Jin-Qiang Li,
  • Hong-Bin Fang,
  • Shao-Jun Xing,
  • Yong-Ming Yan and
  • Yong-Xian Cheng

Beilstein J. Org. Chem. 2023, 19, 789–799, doi:10.3762/bjoc.19.59

Graphical Abstract
  • sp2), one carbonyl carbon, and two sp2 quaternary carbons. The 1H–1H COSY spectrum (Figure 2 and Figure S29 in Supporting Information File 1) of compound 7 disclosed the existence of correlations of H2-2 (δ 2.29, 2.08)/H-3 (δH 1.91, 1.93)/H2-4 (δH 1.38, 1.24)/H2-5 (δH 2.03, 2H)/H-6 (δH 5.12), H-3 (δH
  • , H3-16, H3-17), and 0.94 (d, J = 6.2 Hz, 3H, H3-15)]. The 13C NMR and DEPT spectra (Table 4 and Figure S35 in Supporting Information File 1) show that this substance contains 17 resonances, including three methyls, eight methylenes (one of them oxygenated), three methines (two sp2), one carbonyl
PDF
Album
Supp Info
Correction
Full Research Paper
Published 07 Jun 2023

Synthesis of substituted 8H-benzo[h]pyrano[2,3-f]quinazolin-8-ones via photochemical 6π-electrocyclization of pyrimidines containing an allomaltol fragment

  • Constantine V. Milyutin,
  • Andrey N. Komogortsev,
  • Boris V. Lichitsky,
  • Mikhail E. Minyaev and
  • Valeriya G. Melekhina

Beilstein J. Org. Chem. 2023, 19, 778–788, doi:10.3762/bjoc.19.58

Graphical Abstract
  • guanidine C. Finally, the intramolecular cyclization of the guanidine moiety and the carbonyl group leads to the target pyrimidine 9. After the general synthetic method for pyrimidines containing the allomaltol fragment had been established, the photochemical behavior of the obtained compounds 9 was
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

Sulfate radical anion-induced benzylic oxidation of N-(arylsulfonyl)benzylamines to N-arylsulfonylimines

  • Joydev K. Laha,
  • Pankaj Gupta and
  • Amitava Hazra

Beilstein J. Org. Chem. 2023, 19, 771–777, doi:10.3762/bjoc.19.57

Graphical Abstract
  • were used as the substrates in this reaction, N-arylimines were not isolated. Rather, an amide, in some cases, was isolated via oxidation of the benzylic methylene to a carbonyl group [14]. In the quest of a new method for the synthesis of N-arylsulfonylimines, we questioned ourselves whether N
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2023

Synthesis of imidazo[1,2-a]pyridine-containing peptidomimetics by tandem of Groebke–Blackburn–Bienaymé and Ugi reactions

  • Oleksandr V. Kolomiiets,
  • Alexander V. Tsygankov,
  • Maryna N. Kornet,
  • Aleksander A. Brazhko,
  • Vladimir I. Musatov and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2023, 19, 727–735, doi:10.3762/bjoc.19.53

Graphical Abstract
  • carbonyl component was proposed, but these aldehydes did not have the structure of imidazo[1,2-a]pyridine. Interestingly, in 2019 [1], the synthesis of the amine component using GBB-3CR and the modification of the imidazo-pyrimidine scaffold by a peptidomimetic chain was carried out using the Ugi reaction
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • ) [66]. Variations of this reaction include alkyne metathesis [67] and carbonyl metathesis [68]. Ring-closing metathesis (RCM) gave access to a series of dibenzo[b,f]heteropines, as reported by Matsuda and Sato [31] (Scheme 25). The authors synthesised a series of Si-, Sn-, Ge- and B-tethered dienes 118
  • ) chloride (Scheme 26). Alkyne–carbonyl metathesis is proposed to proceed via [2 + 2] cycloaddition and –reversion steps, catalysed by a Brønsted or Lewis acid, with the catalyst proposed to form a σ-complex with the carbonyl group and/or a π-complex with the alkyne [68]. 3.7 Hydroarylation The construction
PDF
Album
Review
Published 22 May 2023
Other Beilstein-Institut Open Science Activities