Search for "nitriles" in Full Text gives 183 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2013, 9, 2265–2319, doi:10.3762/bjoc.9.265
Graphical Abstract
Scheme 1: Scaled industrial processes for the synthesis of simple pyridines.
Scheme 2: Synthesis of nicotinic acid from 2-methyl-5-ethylpyridine (1.11).
Scheme 3: Synthesis of 3-picoline and nicotinic acid.
Scheme 4: Synthesis of 3-picoline from 2-methylglutarodinitrile 1.19.
Scheme 5: Picoline-based synthesis of clarinex (no yields reported).
Scheme 6: Mode of action of proton-pump inhibitors and structures of the API’s.
Scheme 7: Hantzsch-like route towards the pyridine rings in common proton pump inhibitors.
Figure 1: Structures of rosiglitazone (1.40) and pioglitazone (1.41).
Scheme 8: Synthesis of rosiglitazone.
Scheme 9: Syntheses of 2-pyridones.
Scheme 10: Synthesis and mechanism of 2-pyrone from malic acid.
Scheme 11: Polymer-assisted synthesis of rosiglitazone.
Scheme 12: Synthesis of pioglitazone.
Scheme 13: Meerwein arylation reaction towards pioglitazone.
Scheme 14: Route towards pioglitazone utilising tyrosine.
Scheme 15: Route towards pioglitazone via Darzens ester formation.
Scheme 16: Syntheses of the thiazolidinedione moiety.
Scheme 17: Synthesis of etoricoxib utilising Negishi and Stille cross-coupling reactions.
Scheme 18: Synthesis of etoricoxib via vinamidinium condensation.
Figure 2: Structures of nalidixic acid, levofloxacin and moxifloxacin.
Scheme 19: Synthesis of moxifloxacin.
Scheme 20: Synthesis of (S,S)-2,8-diazabicyclo[4.3.0]nonane 1.105.
Scheme 21: Synthesis of levofloxacin.
Scheme 22: Alternative approach to the levofloxacin core 1.125.
Figure 3: Structures of nifedipine, amlodipine and clevidipine.
Scheme 23: Mg3N2-mediated synthesis of nifedipine.
Scheme 24: Synthesis of rac-amlodipine as besylate salt.
Scheme 25: Aza Diels–Alder approach towards amlodipine.
Scheme 26: Routes towards clevidipine.
Figure 4: Examples of piperidine containing drugs.
Figure 5: Discovery of tiagabine based on early leads.
Scheme 27: Synthetic sequences to tiagabine.
Figure 6: Structures of solifenacin (2.57) and muscarine (2.58).
Scheme 28: Enantioselective synthesis of solifenacin.
Figure 7: Structures of DPP-4 inhibitors of the gliptin-type.
Scheme 29: Formation of inactive diketopiperazines from cis-rotameric precursors.
Figure 8: Co-crystal structure of carmegliptin bound in the human DPP-4 active site (PDB 3kwf).
Scheme 30: Improved route to carmegliptin.
Figure 9: Structures of lamivudine and zidovudine.
Scheme 31: Typical routes accessing uracil, thymine and cytosine.
Scheme 32: Coupling between pyrimidones and riboses via the Vorbrüggen nucleosidation.
Scheme 33: Synthesis of lamivudine.
Scheme 34: Synthesis of raltegravir.
Scheme 35: Mechanistic studies on the formation of 3.22.
Figure 10: Structures of selected pyrimidine containing drugs.
Scheme 36: General preparation of pyrimidines and dihydropyrimidones.
Scheme 37: Synthesis of imatinib.
Scheme 38: Flow synthesis of imatinib.
Scheme 39: Syntheses of erlotinib.
Scheme 40: Synthesis of erlotinib proceeding via Dimroth rearrangement.
Scheme 41: Synthesis of lapatinib.
Scheme 42: Synthesis of rosuvastatin.
Scheme 43: Alternative preparation of the key aldehyde towards rosuvastatin.
Figure 11: Structure comparison between nicotinic acetylcholine receptor agonists.
Scheme 44: Syntheses of varenicline and its key building block 4.5.
Scheme 45: Synthetic access to eszopiclone and brimonidine via quinoxaline intermediates.
Figure 12: Bortezomib bound in an active site of the yeast 20S proteasome ([114], pdb 2F16).
Scheme 46: Asymmetric synthesis of bortezomib.
Figure 13: Structures of some prominent piperazine containing drugs.
Figure 14: Structural comparison between the core of aplaviroc (4.35) and a type-1 β-turn (4.36).
Scheme 47: Examplary synthesis of an aplaviroc analogue via the Ugi-MCR.
Scheme 48: Syntheses of azelastine (5.1).
Figure 15: Structures of captopril, enalapril and cilazapril.
Scheme 49: Synthesis of cilazapril.
Figure 16: Structures of lamotrigine, ceftriaxone and azapropazone.
Scheme 50: Synthesis of lamotrigine.
Scheme 51: Alternative synthesis of lamotrigine (no yields reported).
Figure 17: Structural comparison between imiquimod and the related adenosine nucleoside.
Scheme 52: Conventional synthesis of imiquimod (no yields reported).
Scheme 53: Synthesis of imiquimod.
Scheme 54: Synthesis of imiquimod via tetrazole formation (not all yields reported).
Figure 18: Structures of various anti HIV-medications.
Scheme 55: Synthesis of abacavir.
Figure 19: Structures of diazepam compared to modern replacements.
Scheme 56: Synthesis of ocinaplon.
Scheme 57: Access to zaleplon and indiplon.
Scheme 58: Different routes towards the required N-methylpyrazole 6.65 of sildenafil.
Scheme 59: Polymer-supported reagents in the synthesis of key aminopyrazole 6.72.
Scheme 60: Early synthetic route to sildenafil.
Scheme 61: Convergent preparations of sildenafil.
Figure 20: Comparison of the structures of sildenafil, tadalafil and vardenafil.
Scheme 62: Short route to imidazotriazinones.
Scheme 63: Alternative route towards vardenafils core imidazotriazinone (6.95).
Scheme 64: Bayer’s approach to the vardenafil core.
Scheme 65: Large scale synthesis of vardenafil.
Scheme 66: Mode of action of temozolomide (6.105) as methylating agent.
Scheme 67: Different routes to temozolomide.
Scheme 68: Safer route towards temozolomide.
Figure 21: Some unreported heterocyclic scaffolds in top market drugs.
Beilstein J. Org. Chem. 2013, 9, 2202–2215, doi:10.3762/bjoc.9.259
Graphical Abstract
Figure 1: Natural products having a 1,2,4-oxadiazole core.
Figure 2: Examples of 1,2,4-oxadiazole antitumorals.
Scheme 1: Common synthetic strategies toward 1,2,4-oxadiazoles; (a) amidoxime route; (b) 1,3 dipolar cycloadd...
Scheme 2: One-pot synthesis of 4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)aniline (1) by using the amidoxime route....
Figure 3: Molecular structure of 4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)aniline (1). Atoms are drawn as 50% the...
Figure 4: Packing diagram of compound 1. Hydrogen bonds are indicated as dashed lines.
Scheme 3: One-pot synthesis of 4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)aniline (1) by using the 1,3-dipolar cycl...
Figure 5: Molecular structure of 3-tert-butyl-5-(4-nitrophenyl)-1,2,4-oxadiazole (2). Atoms are drawn as 50% ...
Figure 6: Packing diagram of compound (2) showing C–H···O interactions.
Scheme 4: Synthesis of 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)pyrrolidine-2,5-dione (4).
Figure 7: Molecular structure of 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)pyrrolidine-2,5-dione (4). At...
Figure 8: Molecular structure of 4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4 oxobutanoate (5). Ato...
Figure 9: Packing diagram of compound (5). Dashed lines indicate hydrogen bonds.
Scheme 5: Synthesis of 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)-1H-pyrrole-2,5-dione (7).
Figure 10: Molecular structure of (Z)-4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4-oxobut-2-enoic ac...
Figure 11: Packing diagram of compound 6. Dashed lines indicate hydrogen bonds.
Figure 12: In vitro antitumor activity of compounds 1, 3–7 toward 11 human tumor cell lines.
Figure 13: Individual IC50 values [µM] of compounds 1, 3–7 in a panel of 11 human tumor cell lines.
Beilstein J. Org. Chem. 2013, 9, 1745–1750, doi:10.3762/bjoc.9.201
Graphical Abstract
Scheme 1: Formation of azirines 2 from vinyl azides 1, photoinduced ring-opening to the nitrile ylides 3, and...
Scheme 2: Solid-phase assisted synthesis of vinyl azides 1 from alkenes 6 under flow conditions [9].
Scheme 3: Schematic presentation of the flow set-up for the synthesis of 2H-azirines 2 under inductive heatin...
Scheme 4: Photoinduced cycloadditions of vinyl azides 1a–f and electron-deficient alkenes 4a–d. All experimen...
Scheme 5: Photoinduced cycloaddtion of vinyl azide 1c and diisopropyl azodicarboxylate (4e). The experiment w...
Scheme 6: Photoinduced cycloaddtion of vinyl azide 1b and alkyne 4f. The experiment was conducted at room tem...
Scheme 7: Formation of 2,5-dihydrooxazole 9 starting from vinyl azide 1g under flow conditions (c = 0.01 M, f...
Beilstein J. Org. Chem. 2013, 9, 1698–1704, doi:10.3762/bjoc.9.194
Graphical Abstract
Scheme 1: Gallium-catalyzed dehydration of cinnamaldehyde oxime (1).
Scheme 2: General scheme for anchoring of initiator, ATRP of styrene sulfonate, activation, and reaction with...
Figure 1: Gallium-catalyzed formation of nitrile 2 at 90 °C and 5 atm pressure.
Figure 2: Arrhenius plot for the dehydration of cinnamaldehyde oxime (1).
Figure 3: Conversion of cinnamaldehyde oxime (1, 25 µM in acetonitrile) by continuously running the catalytic...
Beilstein J. Org. Chem. 2013, 9, 1572–1577, doi:10.3762/bjoc.9.179
Graphical Abstract
Scheme 1: Imidate hydrochloride synthesis discovered by Pinner and Klein [1,2].
Scheme 2: Mechanism of the Pinner reaction.
Scheme 3: Transformations of imidate hydrochlorides.
Scheme 4: Reaction used for optimizations.
Scheme 5: Plausible mechanism of the Lewis acid-promoted Pinner reaction.
Scheme 6: Synthesis of monaspilosin.
Scheme 7: Proposed mechanism of the trimethylsilyl triflate-promoted Ritter reaction.
Beilstein J. Org. Chem. 2013, 9, 1083–1092, doi:10.3762/bjoc.9.120
Graphical Abstract
Figure 1: O-Ethoxycarbonyl oximes prepared.
Scheme 1: Photochemical reactions of biphenyl oxime carbonates.
Figure 2: EPR spectrum during photolysis of 1f in t-BuPh at 240 K. Top (black): experimental spectrum. Bottom...
Figure 3: EPR spectrum during photolysis of 2a in t-BuPh at 230 K. Top (blue): experiment; bottom (red): simu...
Scheme 2: Ring closure of iminyl radicals derived from 2a,b.
Figure 4: DFT computed structures for 5a, 11a and their cyclisation transition states (TS). Top line: spin de...
Beilstein J. Org. Chem. 2013, 9, 934–941, doi:10.3762/bjoc.9.107
Graphical Abstract
Scheme 1: Synthesis of pyrrolo[3,2-e]indoles via VNS in 5-nitroindoles [6,12].
Scheme 2: Synthesis of pyrrolo[3,2-e]indoles 6.
Scheme 3: Plausible route for transformation of indoles 5 into pyrrolo[3,2-e]indoles 6.
Scheme 4: Removal of the benzyloxymethyl group from the compound 8a.
Beilstein J. Org. Chem. 2013, 9, 800–808, doi:10.3762/bjoc.9.91
Graphical Abstract
Scheme 1: Photoinduced electron transfer as an access to radical chemistry.
Figure 1: Reduction potential (versus SCE) of the ground and excited state of acceptors and oxidation potenti...
Figure 2: UV-monitoring of: (a) a 2 × 10−4 M solution of TCB in the presence of Bu4Sn (10−2 M) and (b) a 1.5 ...
Figure 3: Absorption spectra of a freeze–pump–thaw deoxygenated MeCN solution irradiated at 313 nm of (a) 1,2...
Scheme 2: Mechanistic scheme.
Figure 4: Thermodynamics of the redox processes discussed (solid arrows represent exergonic electron donation...
Beilstein J. Org. Chem. 2013, 9, 278–302, doi:10.3762/bjoc.9.34
Graphical Abstract
Scheme 1: Variation of substrates for carbomagnesiation and carbozincation in this article.
Scheme 2: Copper-catalyzed arylmagnesiation and allylmagnesiation of alkynyl sulfone.
Scheme 3: Copper-catalyzed four-component reaction of alkynyl sulfoxide with alkylzinc reagent, diiodomethane...
Scheme 4: Rhodium-catalyzed reaction of aryl alkynyl ketones with arylzinc reagents.
Scheme 5: Allylmagnesiation of propargyl alcohol, which provides the anti-addition product.
Scheme 6: Negishi’s total synthesis of (Z)-γ-bisabolene by allylmagnesiation.
Scheme 7: Iron-catalyzed syn-carbomagnesiation of propargylic or homopropargylic alcohol.
Scheme 8: Mechanism of iron-catalyzed carbomagnesiation.
Scheme 9: Regio- and stereoselective manganese-catalyzed allylmagnesiation.
Scheme 10: Vinylation and alkylation of arylacetylene-bearing hydroxy group.
Scheme 11: Arylmagnesiation of (2-pyridyl)silyl-substituted alkynes.
Scheme 12: Synthesis of tamoxifen from 2g.
Scheme 13: Controlling regioselectivity of carbocupration by attaching directing groups.
Scheme 14: Rhodium-catalyzed carbozincation of ynamides.
Scheme 15: Synthesis of 4-pentenenitriles through carbometalation followed by aza-Claisen rearrangement.
Scheme 16: Uncatalyzed carbomagnesiation of cyclopropenes.
Scheme 17: Iron-catalyzed carbometalation of cyclopropenes.
Scheme 18: Enantioselective carbozincation of cyclopropenes.
Scheme 19: Copper-catalyzed facially selective carbomagnesiation.
Scheme 20: Arylmagnesiation of cyclopropenes.
Scheme 21: Enantioselective methylmagnesiation of cyclopropenes without catalyst.
Scheme 22: Copper-catalyzed carbozincation.
Scheme 23: Enantioselective ethylzincation of cyclopropenes.
Scheme 24: Nickel-catalyzed ring-opening aryl- and alkenylmagnesiation of a methylenecyclopropane.
Scheme 25: Reaction mechanism.
Scheme 26: Nickel-catalyzed carbomagnesiation of arylacetylene and dialkylacetylene.
Scheme 27: Nickel-catalyzed carbozincation of arylacetylenes and its application to the synthesis of tamoxifen....
Scheme 28: Bristol-Myers Squibb’s nickel-catalyzed phenylzincation.
Scheme 29: Iron/NHC-catalyzed arylmagnesiation of aryl(alkyl)acetylene.
Scheme 30: Iron/copper-cocatalyzed alkylmagnesiation of aryl(alkyl)acetylenes.
Scheme 31: Iron-catalyzed hydrometalation.
Scheme 32: Iron/copper-cocatalyzed arylmagnesiation of dialkylacetylenes.
Scheme 33: Chromium-catalyzed arylmagnesiation of alkynes.
Scheme 34: Cobalt-catalyzed arylzincation of alkynes.
Scheme 35: Cobalt-catalyzed formation of arylzinc reagents and subsequent arylzincation of alkynes.
Scheme 36: Cobalt-catalyzed benzylzincation of dialkylacetylene and aryl(alkyl)acetylenes.
Scheme 37: Synthesis of estrogen receptor antagonist.
Scheme 38: Cobalt-catalyzed allylzincation of aryl-substituted alkynes.
Scheme 39: Silver-catalyzed alkylmagnesiation of terminal alkyne.
Scheme 40: Proposed mechanism of silver-catalyzed alkylmagnesiation.
Scheme 41: Zirconium-catalyzed ethylzincation of terminal alkenes.
Scheme 42: Zirconium-catalyzed alkylmagnesiation.
Scheme 43: Titanium-catalyzed carbomagnesiation.
Scheme 44: Three-component coupling reaction.
Scheme 45: Iron-catalyzed arylzincation reaction of oxabicyclic alkenes.
Scheme 46: Reaction of allenyl ketones with organomagnesium reagent.
Scheme 47: Regio- and stereoselective reaction of a 2,3-allenoate.
Scheme 48: Three-component coupling reaction of 1,2-allenoate, organozinc reagent, and ketone.
Scheme 49: Proposed mechanism for a rhodium-catalyzed arylzincation of allenes.
Scheme 50: Synthesis of skipped polyenes by iterative arylzincation/allenylation reaction.
Scheme 51: Synthesis of 1,4-diorganomagnesium compound from 1,2-dienes.
Scheme 52: Synthesis of tricyclic compounds.
Scheme 53: Manganese-catalyzed allylmagnesiation of allenes.
Scheme 54: Copper-catalyzed alkylmagnesiation of 1,3-dienes and 1,3-enynes.
Scheme 55: Chromium-catalyzed methallylmagnesiation of 1,6-diynes.
Scheme 56: Chromium-catalyzed allylmagnesiation of 1,6-enynes.
Scheme 57: Proposed mechanism of the chromium-catalyzed methallylmagnesiation.
Beilstein J. Org. Chem. 2012, 8, 1936–1998, doi:10.3762/bjoc.8.225
Graphical Abstract
Figure 1: Loschmidt’s structure proposal for benzene (1) (Scheme 181 from [3]) and the corresponding modern stru...
Figure 2: The first isolated bisallenes.
Figure 3: Carbon skeletons of selected bisallenes discussed in this review.
Scheme 1: The preparation of 1,2,4,5-hexatetraene (2).
Scheme 2: The preparation of a conjugated bisallene by the DMS-protocol.
Scheme 3: Preparation of the 3-deuterio- and 3,4-dideuterio derivatives of 24.
Scheme 4: A versatile method to prepare alkylated conjugated bisallenes and other allenes.
Scheme 5: A preparation of 3,4-dimethyl-1,2,4,5-hexatetraene (38).
Scheme 6: A (C6 + 0)-approach to 1,2,4,5-hexatetraene (2).
Scheme 7: The preparation of a fully alkylated bisallenes from a 2,4-hexadiyne-1,6-diol diacetate.
Scheme 8: The preparation of the first phenyl-substituted conjugated bisallenes 3 and 4.
Scheme 9: Selective hydrogenation of [5]cumulenes to conjugated bisallenes: another (C6 + 0)-route.
Scheme 10: Aryl-substituted conjugated bisallenes by a (C3 + C3)-approach.
Scheme 11: Hexaphenyl-1,2,4,5-hexatetraene (59) by a (C3 + C3)-approach.
Scheme 12: An allenation route to conjugated bisallenes.
Scheme 13: The preparation of 3,4-difunctionalized conjugated bisallenes.
Scheme 14: Problems during the preparation of sulfur-substituted conjugated bisallenes.
Scheme 15: The preparation of 3,4-dibromo bisallenes.
Scheme 16: Generation of allenolates by an oxy-Cope rearrangement.
Scheme 17: A linear trimerization of alkynes to conjugated bisallenes: a (C2 + C2 + C2)-protocol.
Scheme 18: Preparation of a TMS-substituted conjugated bisallene by a C3-dimerization route.
Scheme 19: A bis(trimethylsilyl)bisallene by a C3-coupling protocol.
Scheme 20: The rearrangement of highly substituted benzene derivatives into their conjugated bisallenic isomer...
Scheme 21: From fully substituted benzene derivatives to fully substituted bisallenes.
Scheme 22: From a bicyclopropenyl to a conjugated bisallene derivative.
Scheme 23: The conversion of a bismethylenecyclobutene into a conjugated bisallene.
Scheme 24: The preparation of monofunctionalized bisallenes.
Scheme 25: Preparation of bisallene diols and their cyclization to dihydrofurans.
Scheme 26: A 3,4-difunctionalized conjugated bisallene by a C3-coupling process.
Scheme 27: Preparation of a bisallenic diketone by a coupling reaction.
Scheme 28: Sulfur and selenium-substituted bisallenes by a [2.3]sigmatropic rearrangement.
Scheme 29: The biallenylation of azetidinones.
Scheme 30: The preparation of a fully ferrocenylated conjugated bisallene.
Scheme 31: The first isomerization of a 1,5-hexadiyne to a 1,2,4,5-hexatetraene.
Scheme 32: The preparation of alkynyl-substituted bisallenes by a C3-dimerization protocol.
Scheme 33: Preparation of another completely ferrocenylated bisallene.
Scheme 34: The cyclization of 1,5-hexadiyne (129) to 3,4-bismethylenecyclobutene (130) via 1,2,4,5-hexatetraen...
Scheme 35: Stereochemistry of the thermal cyclization of bisallenes to bismethylenecyclobutenes.
Scheme 36: Bisallene→bismethylenecyclobutene ring closures in the solid state.
Scheme 37: A bisallene cyclization/dimerization reaction.
Scheme 38: A selection of Diels–Alder additions of 1,2,4,5-hexatetraene with various double-bond dienophiles.
Scheme 39: The stereochemistry of the [2 + 4] cycloaddition to conjugated bisallenes.
Scheme 40: Preparation of azetidinone derivatives from conjugated bisallenes.
Scheme 41: Cycloaddition of heterodienophiles to a conjugated bisallene.
Scheme 42: Addition of triple-bond dienophiles to conjugated bisallenes.
Scheme 43: Sulfur dioxide addition to conjugated bisallenes.
Scheme 44: The addition of a germylene to a conjugated bisallene.
Scheme 45: Trapping of conjugated bisallenes with phosphinidenes.
Scheme 46: The cyclopropanantion of 1,2,4,5-hexatetraene (2).
Scheme 47: Photochemical reactions involving conjugated bisallenes.
Scheme 48: Base-catalyzed isomerizations of conjugated bisallenes.
Scheme 49: Ionic additions to a conjugated bisallene.
Scheme 50: Oxidation reactions of a conjugated bisallene.
Scheme 51: The mechanism of oxidation of the bisallene 24.
Scheme 52: CuCl-catalyzed cyclization of 1,2,4,5-hexatetraene (2).
Scheme 53: The conversion of conjugated bisallenes into cyclopentenones.
Scheme 54: Oligomerization of a conjugated bisallene by nickel catalysts.
Scheme 55: Generation of 1,2,5,6-heptatetraene (229) as a reaction intermediate.
Scheme 56: The preparation of a stable derivative of 1,2,5,6-heptatetraene.
Scheme 57: A bisallene with a carbonyl group as a spacer element.
Scheme 58: The first preparation of 1,2,6,7-octatetraene (242).
Scheme 59: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of enynes.
Scheme 60: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of homoallenyl bromides.
Scheme 61: Preparation of 1,2,6,7-octatetraenes by alkylation of propargylic substrates.
Scheme 62: Preparation of two highly functionalized 1,2,6,7-octatetraenes.
Scheme 63: Preparation of several higher α,ω-bisallenes.
Scheme 64: Preparation of different alkyl derivatives of α,ω-bisallenes.
Scheme 65: The preparation of functionalized 1,2,7,8-nonatetraene derivatives.
Scheme 66: Preparation of functionalized α,ω-bisallenes.
Scheme 67: The preparation of an α,ω-bisallene by direct homologation of an α,ω-bisalkyne.
Scheme 68: The gas-phase pyrolysis of 4,4-dimethyl-1,2,5,6-heptatetraene (237).
Scheme 69: Gas-phase pyrolysis of 1,2,6,7-octatetraene (242).
Scheme 70: The cyclopropanation of 1,2,6,7-octatetraene (242).
Scheme 71: Intramolecular cyclization of 1,2,6,7-octatetraene derivatives.
Scheme 72: The gas-phase pyrolysis of 1,2,7,8-nonatetraene (265) and 1,2,8,9-decatetraene (266).
Scheme 73: Rh-catalyzed cyclization of a functionalized 1,2,7,8-nonatetraene.
Scheme 74: A triple cyclization involving two different allenic substrates.
Scheme 75: Bicyclization of keto derivatives of 1,2,7,8-nonatetraene.
Scheme 76: The preparation of complex organic compounds from functionalized bisallenes.
Scheme 77: Cycloisomerization of an α,ω-bisallene containing a C9 tether.
Scheme 78: Organoborane polymers from α,ω-bisallenes.
Scheme 79: Preparation of trans- (337) and cis-1,2,4,6,7-octapentaene (341).
Scheme 80: The preparation of 4-methylene-1,2,5,6-heptatetraene (349).
Scheme 81: The preparation of acetylenic bisallenes.
Scheme 82: The preparation of derivatives of hydrocarbon 351.
Scheme 83: The construction of macrocyclic alleno-acetylenes.
Scheme 84: Preparation and reactions of 4,5-bismethylene-1,2,6,7-octatetraene (365).
Scheme 85: Preparation of 1,2-bis(propadienyl)benzene (370).
Scheme 86: The preparation of 1,4-bis(propadienyl)benzene (376).
Scheme 87: The preparation of aromatic and heteroaromatic bisallenes by metal-mediated coupling reactions.
Scheme 88: Double cyclization of an aromatic bisallene.
Scheme 89: Preparation of an allenic [15]paracyclophane by a ring-closing metathesis reaction of an aromatic α...
Scheme 90: Preparation of a macrocyclic ring system containing 1,4-bis(propadienyl)benzene units.
Scheme 91: Preparation of copolymers from 1,4-bis(propadienyl)benzene (376).
Scheme 92: A boration/copolymerization sequence of an aromatic bisallene and an aromatic bisacetylene.
Scheme 93: Formation of a layered aromatic bisallene.
Figure 4: The first members of the semicyclic bisallene series.
Scheme 94: Preparation of the first bis(vinylidene)cyclobutane derivative.
Scheme 95: Dimerization of strain-activated cumulenes to bis(vinylidene)cyclobutanes.
Scheme 96: Photodimerization of two fully substituted butatrienes in the solid state.
Scheme 97: Preparation of the two parent bis(vinylidene)cyclobutanes.
Scheme 98: The preparation of 1,3-bis(vinylidene)cyclopentane and its thermal isomerization.
Scheme 99: The preparation of the isomeric bis(vinylidene)cyclohexanes.
Scheme 100: Bi- and tricyclic conjugated bisallenes.
Scheme 101: A selection of polycyclic bisallenes.
Scheme 102: The first endocyclic bisallenes.
Figure 5: The stereochemistry of 1,2,6,7-cyclodecatetraene.
Scheme 103: The preparation of several endocyclic bisallenes.
Scheme 104: Synthesis of diastereomeric derivatives of 1,2,6,7-cyclodecatetraene.
Scheme 105: Preparation of a derivative of 1,2,8,9-cyclotetradecatetraene.
Scheme 106: The preparation of keto derivatives of cyclic bisallenes.
Scheme 107: The preparation of cyclic biscumulenic ring systems.
Scheme 108: Cyclic bisallenes in natural- and non-natural-product chemistry.
Scheme 109: The preparation of iron carbonyl complexes from cyclic bisallenes.
Figure 6: A selection of unknown exocyclic bisallenes that should have interesting chemical properties.
Scheme 110: The thermal isomerization of 1,2-diethynylcyclopropanes and -cyclobutanes.
Scheme 111: Intermediate generation of a cyclooctapentaene.
Scheme 112: Attempted preparation of a cyclodecahexaene.
Scheme 113: The thermal isomerization of 1,5,9-cyclododecatriyne (511) into [6]radialene (514).
Scheme 114: An isomerization involving a diketone derived from a conjugated bisallene.
Scheme 115: Typical reaction modes of heteroorganic bisallenes.
Scheme 116: Generation and thermal behavior of acyclic hetero-organic bisallenes.
Scheme 117: Generation of bis(propadienyl)thioether.
Scheme 118: The preparation of a bisallenic sulfone and its thermal isomerization.
Scheme 119: Bromination of the bisallenic sulfone 535.
Scheme 120: Metalation/hydrolysis of the bisallenic sulfone 535.
Scheme 121: Aromatic compounds from hetero bisallenes.
Scheme 122: Isomerization/cyclization of bispropargylic ethers.
Scheme 123: The preparation of novel aromatic systems by base-catalyzed isomerization of bispropargyl ethers.
Scheme 124: The isomerization of bisacetylenic thioethers to bicyclic thiophenes.
Scheme 125: Aromatization of macrocyclic bispropargylic sulfides.
Scheme 126: Preparation of ansa-compounds from macrocyclic bispropargyl thioethers.
Scheme 127: Alternate route for cyclization of a heterorganic bisallene.
Scheme 128: Multiple isomerization/cyclization of “double” bispropargylic thioethers.
Scheme 129: Preparation of a bisallenyl disulfide and its subsequent bicyclization.
Scheme 130: Thermal cyclization of a bisallenyl thiosulfonate.
Scheme 131: Some reactions of heteroorganic bisallenes with two sulfur atoms.
Scheme 132: Further methods for the preparation of heteroorganic bisallenes.
Scheme 133: Cyclization reactions of heteroorganic bisallenes.
Scheme 134: Thermal cycloadditions of bisallenic tertiary amines.
Scheme 135: Cyclization of a bisallenic tertiary amine in the presence of a transition-metal catalyst.
Scheme 136: A Pauson–Khand reaction of a bisallenic ether.
Scheme 137: Formation of a 2:1adduct from two allenic substrates.
Scheme 138: A ring-forming silastannylation of a bisallenic tertiary amine.
Scheme 139: A three-component cyclization involving a heterorganic bisallene.
Scheme 140: Atom-economic construction of a complex organic framework from a heterorganic α,ω-bisallene.
Beilstein J. Org. Chem. 2012, 8, 1619–1629, doi:10.3762/bjoc.8.185
Graphical Abstract
Scheme 1: Amadori rearrangement.
Scheme 2: C-Elongation using the sodium cyanide/sodium borohydride and HCN/Pd(BaSO4) method.
Scheme 3: C-Elongation as well as Amadori rearrangement in the D-gluco series.
Scheme 4: C-Elongation method by modified Kiliani–Fischer protocol from of D-galactose, D-mannose as well as ...
Scheme 5: Amadori rearrangement in the D-galacto series.
Scheme 6: Amadori rearrangement in the D-manno series.
Scheme 7: Amadori rearrangement in the GlcNAc series.
Beilstein J. Org. Chem. 2012, 8, 1374–1384, doi:10.3762/bjoc.8.159
Graphical Abstract
Scheme 1: Triflic acid-catalysed synthesis of cyclic aminals.
Scheme 2: PTSA-catalysed synthesis of cyclic aminals.
Scheme 3: Plausible mechanism for cyclic aminal synthesis.
Scheme 4: Annulation cascade reaction with double nucleophiles.
Scheme 5: Mechanism for the indole-annulation cascade reaction.
Scheme 6: Synthesis of N-alkylpyrroles and δ-hydroxypyrroles.
Scheme 7: Synthesis of N-alkylindoles 9 and N-alkylindolines 10.
Scheme 8: Mechanistic study for the N-alkylpyrrole formation.
Scheme 9: Benzoic acid catalysed decarboxylative redox amination.
Scheme 10: Organocatalytic redox reaction of ortho-(dialkylamino)cinnamaldehydes.
Scheme 11: Mechanism for aminocatalytic redox reaction of ortho-(dialkylamino)cinnamaldehydes.
Scheme 12: Asymmetric synthesis of tetrahydroquinolines having gem-methyl ester groups.
Scheme 13: Asymmetric synthesis of tetrahydroquinolines from chiral substrates 18.
Scheme 14: Organocatalytic biaryl synthesis by Kwong, Lei and co-workers.
Scheme 15: Organocatalytic biaryl synthesis by Shi and co-workers.
Scheme 16: Organocatalytic biaryl synthesis by Hayashi and co-workers.
Scheme 17: Proposed mechanism for organocatalytic biaryl synthesis.
Beilstein J. Org. Chem. 2011, 7, 1656–1662, doi:10.3762/bjoc.7.195
Graphical Abstract
Scheme 1: Access to 1,3-diaryl-4-halo-1H-pyrazoles from 3-arylsydnones and 2-aryl-1,1-dihalo-1-alkenes.
Figure 1: Crystal structure of pyrazole 3g.
Scheme 2: Proposed mechanism for the synthesis of 3.
Scheme 3: Arylation reactions of pyrazoles (3) with iodobenzene or phenylboronic acid.
Beilstein J. Org. Chem. 2011, 7, 1261–1277, doi:10.3762/bjoc.7.147
Graphical Abstract
Scheme 1: Preparation of polyfunctional heteroarylzinc reagents.
Scheme 2: LiCl-mediated insertion of zinc dust to aryl and heteroaryl iodides.
Scheme 3: Selective insertions of Zn in the presence of LiCl.
Scheme 4: Chemoselective insertion of zinc in the presence of LiCl.
Scheme 5: Preparation and reactions of benzylic zinc reagents.
Scheme 6: Ni-catalyzed cross-coupling of benzylic zinc reagent 34 with ethyl 2-chloronicotinate.
Scheme 7: In situ generation of arylzinc reagents using Mg in the presence of LiCl and ZnCl2.
Scheme 8: Zincation of heterocycles with TMP2Zn (42).
Scheme 9: Preparation of highly functionalized zincated heterocycles using TMP2Zn·2MgCl2·2LiCl (42).
Scheme 10: Microwave-accelerated zincation of heterocycles using TMP2Zn·2MgCl2·2LiCl (42).
Scheme 11: The I/Mg-exchange as a metal-metathesis reaction.
Scheme 12: Regioselective Br/Mg-exchange of dibromoquinolines 65 and 68.
Scheme 13: Improved reagents for the regioselective Br/Mg-exchange on bromoquinolines.
Scheme 14: Synthesis of ellipticine (83) using an I/Mg-exchange reaction.
Scheme 15: An oxidative amination leading to the biologically active adenine, purvalanol A (84).
Scheme 16: Preparation of polyfunctional arylmagnesium reagents using Mg in the presence of LiCl.
Scheme 17: Preparation of polyfunctional magnesium reagents starting from organic chlorides.
Scheme 18: Selective multiple magnesiation of the pyrimidine ring.
Scheme 19: Synthesis of a p38 kinase inhibitor 119 and of a sPLA2 inhibitor 123.
Scheme 20: Synthesis of highly substituted indoles of type 128.
Scheme 21: Efficient magnesiations of polyfunctional aromatics and heterocycles using TMP2Mg·2LiCl (129).
Scheme 22: Negishi cross-coupling in the presence of substrates bearing an NH- or an OH-group.
Scheme 23: Negishi cross-coupling in the presence of a serine moiety.
Scheme 24: Radical catalysis for the performance of very fast Kumada reactions.
Scheme 25: MgCl2-mediated addition of functionalized aromatic, heteroaromatic, alkyl and benzylic organozincs ...
Beilstein J. Org. Chem. 2011, 7, 1228–1233, doi:10.3762/bjoc.7.143
Graphical Abstract
Scheme 1: Synthesis of potent antiviral and antitumor cyclonucleosides 5.
Figure 1: Lithiation of 2',3'-O-isopropylideneuridine (6).
Figure 2: Metalation of 5'-O-TMDMS protected nucleoside 10.
Figure 3: Lithiation/alkylation of 2',3',5'-tri-O-benzoyl-3,6-dimethyluridine (13) using LDA.
Scheme 2: Preparation of 2',3'-O-isopropylidene-5'-O-(tert-butyldimethylsilyl)-6-methyluridine (2).
Scheme 3: Lateral lithiation/alkylation of 6-methyluridine 2.
Figure 4: Bis-allylated products 20 and 21.
Beilstein J. Org. Chem. 2011, 7, 1075–1094, doi:10.3762/bjoc.7.124
Graphical Abstract
Scheme 1: AuCl3-catalyzed benzannulations reported by Yamamoto.
Scheme 2: Synthesis of 9-oxabicyclo[3.3.1]nona-4,7-dienes from 1-oxo-4-oxy-5-ynes [40].
Scheme 3: Stereocontrolled oxacyclization/(4 + 2)-cycloaddition cascade of ketone–allene substrates [43].
Scheme 4: Gold-catalyzed synthesis of polycyclic, fully substituted furans from 1-(1-alkynyl)cyclopropyl keto...
Scheme 5: Gold-catalyzed 1,3-dipolar cycloaddition of 2-(1-alkynyl)-2-alken-1-ones with nitrones [47].
Scheme 6: Enantioselective 1,3-dipolar cycloaddition of 2-(1-alkynyl)-2-alken-1-ones with nitrones [48].
Scheme 7: Gold-catalyzed 1,3-dipolar cycloaddition of 2-(1-alkynyl)-2-alken-1-ones with α,β-unsaturated imine...
Scheme 8: Gold-catalyzed (4 + 3) cycloadditions of 1-(1-alkynyl)oxiranyl ketones [50].
Scheme 9: (3 + 2) Cycloaddition of gold-containing azomethine ylides [52].
Scheme 10: Gold-catalyzed generation and reaction of azomethine ylides [53].
Scheme 11: Gold-catalyzed intramolecular (4 + 2) cycloadditions of unactivated alkynes and dienes [55].
Scheme 12: Gold-catalyzed preparation of bicyclo[4.3.0]nonane derivatives from dienol silyl ethers [59].
Scheme 13: Gold(I)-catalyzed intramolecular (4 + 2) cycloadditions of arylalkynes or 1,3-enynes with alkenes [60].
Scheme 14: Gold(I)-catalyzed intermolecular (2 + 2) cycloaddition of alkynes with alkenes [62].
Scheme 15: Metal-catalyzed cycloaddition of alkynes tethered to cycloheptatriene [65].
Scheme 16: Gold-catalyzed cycloaddition of functionalized ketoenynes: Synthesis of (+)-orientalol F [68].
Scheme 17: Gold-catalyzed intermolecular cyclopropanation of enynes with alkenes [70].
Scheme 18: Gold-catalyzed intermolecular hetero-dehydro Diels–Alder cycloaddition [72].
Figure 1: Gold-catalyzed 1,2- or 1,3-acyloxy migrations of propargyl esters.
Scheme 19: Gold(I)-catalyzed stereoselective olefin cyclopropanation [74].
Scheme 20: Reaction of propargylic benzoates with α,β-unsaturated imines to give azepine cycloadducts [77].
Scheme 21: Gold-catalyzed (3 + 3) annulation of azomethine imines with propargyl esters [81].
Scheme 22: Gold(I)-catalyzed isomerization of 5-en-2-yn-1-yl acetates [83].
Scheme 23: (3 + 2) and (2 + 2) cycloadditions of indole-3-acetates 41 [85,86].
Scheme 24: Gold(I)-catalyzed (2 + 2) cycloaddition of allenenes [87].
Scheme 25: Formal (3 + 2) cycloaddition of allenyl MOM ethers and alkenes [90].
Scheme 26: (4 + 3) Cycloadditions of allenedienes [97,98].
Scheme 27: Gold-catalyzed transannular (4 + 3) cycloaddition reactions [101].
Scheme 28: Gold(I)-catalyzed (4 + 2) cycloadditions of allenedienes [102].
Scheme 29: Enantioselective gold(I)-catalyzed (4 + 2) cycloadditions of allenedienes [88,102,104].
Scheme 30: (3 + 2) versus (2 + 2) Cycloadditions of allenenes [87,99].
Figure 2: NHC ligands with different π-acceptor properties [106].
Scheme 31: (3 + 2) versus (2 + 2) Cycloadditions of allenenes [106].
Scheme 32: Gold(I)-catalyzed intermolecular (4 + 2) cycloaddition of allenamides and acyclic dienes [109].
Beilstein J. Org. Chem. 2011, 7, 962–975, doi:10.3762/bjoc.7.108
Graphical Abstract
Scheme 1: Preparation of β-ketoenamides and subsequent cyclocondensation to 4-hydroxypyridines. a) Et2O, −40 ...
Scheme 2: Mechanistic rational for the formation of β-ketoenamides 16.
Scheme 3: Reaction of proline derivative 45 and formation of β-ketoenamide 47 and enolester 48.
Figure 1: 1H NMR spectra of 49 and the mixture of diastereoisomers 49 and 49’.
Scheme 4: Synthesis of pyrid-4-yl nonaflate 52.
Scheme 5: O-Methylation of pyridine derivatives 22 and 30 followed by desilylation.
Scheme 6: Formation of 5-alkoxypyrimidines from β-alkoxy-β-ketoenamides.
Beilstein J. Org. Chem. 2011, 7, 897–936, doi:10.3762/bjoc.7.103
Graphical Abstract
Scheme 1: Gold-catalyzed addition of alcohols.
Scheme 2: Gold-catalyzed cycloaddition of alcohols.
Scheme 3: Ionic liquids as the solvent in gold-catalyzed cycloaddition.
Scheme 4: Gold-catalyzed cycloaddition of diynes.
Scheme 5: Gold(I) chloride catalyzed cycloisomerization of 2-alkynyl-1,5-diols.
Scheme 6: Gold-catalyzed cycloaddition of glycols and dihydroxy compounds.
Scheme 7: Gold-catalyzed ring-opening of cyclopropenes.
Scheme 8: Gold-catalyzed intermolecular hydroalkoxylation of alkynes. PR3 = 41–45.
Scheme 9: Gold-catalyzed intramolecular 6-endo-dig cyclization of β-hydroxy-α,α-difluoroynones.
Scheme 10: Gold-catalyzed intermolecular hydroalkoxylation of non-activated olefins.
Scheme 11: Preparation of unsymmetrical ethers from alcohols.
Scheme 12: Expedient synthesis of dihydrofuran-3-ones.
Scheme 13: Catalytic approach to functionalized divinyl ketones.
Scheme 14: Gold-catalyzed glycosylation.
Scheme 15: Gold-catalyzed cycloaddition of aldehydes and ketones.
Scheme 16: Gold-catalyzed annulations of 2-(ynol)aryl aldehydes and o-alkynyl benzaldehydes.
Scheme 17: Gold-catalyzed addition of carboxylates.
Scheme 18: Dual-catalyzed rearrangement reaction of allenoates.
Scheme 19: Meyer–Schuster rearrangement of propargylic alcohols.
Scheme 20: Propargylic alcohol rearrangements.
Scheme 21: Gold-catalyzed synthesis of imines and amine alkylation.
Scheme 22: Hydroamination of allenes and allenamides.
Scheme 23: Gold-catalyzed inter- and intramolecular amination of alkynes and alkenes.
Scheme 24: Gold-catalyzed cycloisomerization of O-propioloyl oximes and β-allenylhydrazones.
Scheme 25: Intra- and intermolecular amination with ureas.
Scheme 26: Gold-catalyzed cyclization of ortho-alkynyl-N-sulfonylanilines and but-3-yn-1-amines.
Scheme 27: Gold-catalyzed piperidine ring synthesis.
Scheme 28: Ring expansion of alkylnyl cyclopropanes.
Scheme 29: Gold-catalyzed annulations of N-propargyl-β-enaminones and azomethine imines.
Scheme 30: Gold(I)-catalyzed cycloisomerization of aziridines.
Scheme 31: AuCl3/AgSbF6-catalyzed intramolecular amination of 2-(tosylamino)phenylprop-1-en-3-ols.
Scheme 32: Gold-catalyzed cyclization via a 7-endo-dig pathway.
Scheme 33: Gold-catalyzed synthesis of fused xanthines.
Scheme 34: Gold-catalyzed synthesis of amides and isoquinolines.
Scheme 35: Gold-catalyzed oxidative cross-coupling reactions of propargylic acetates.
Scheme 36: Gold-catalyzed nucleophilic addition to allenamides.
Scheme 37: Gold-catalyzed direct carbon–carbon bond coupling reactions.
Scheme 38: Gold-catalyzed C−H functionalization of indole/pyrrole heterocycles and non-activated arenes.
Scheme 39: Gold-catalyzed cycloisomerization of cyclic compounds.
Scheme 40: Gold-catalyzed cycloaddition of 1-aryl-1-allen-6-enes and propargyl acetates.
Scheme 41: Gold(I)-catalyzed cycloaddition with ligand-controlled regiochemistry.
Scheme 42: Gold(I)-catalyzed cycloaddition of dienes and enynes.
Scheme 43: Gold-catalyzed intramolecular cycloaddition of 3-alkoxy-1,5-enynes and 2,2-dipropargylmalonates.
Scheme 44: Gold-catalyzed intramolecular cycloaddition of 1,5-allenynes.
Scheme 45: Gold(I)-catalyzed cycloaddition of indoles.
Scheme 46: Gold-catalyzed annulation reactions.
Scheme 47: Gold–carbenoid induced cleavage of a sp3-hybridized C−H bond.
Scheme 48: Furan- and indole-based cascade reactions.
Scheme 49: Tandem process using aromatic alkynes.
Scheme 50: Gold-catalyzed cycloaddition of 1,3-dien-5-ynes.
Scheme 51: Gold-catalyzed cascade cyclization of diynes, propargylic esters, and 1,3-enynyl ketones.
Scheme 52: Tandem reaction of β-phenoxyimino ketones and alkynyl oxime ethers.
Scheme 53: Gold-catalyzed tandem cyclization of enynes, 2-(tosylamino)phenylprop-1-yn-3-ols, and allenoates.
Scheme 54: Cyclization of 2,4-dien-6-yne carboxylic acids.
Scheme 55: Gold(I)-catalyzed tandem cyclization approach to tetracyclic indolines.
Scheme 56: Gold-catalyzed tandem reactions of alkynes.
Scheme 57: Aminoarylation and oxyarylation of alkenes.
Scheme 58: Cycloaddition of 2-ethynylnitrobenzene with various alkenes.
Scheme 59: Gold-catalyzed tandem reactions of allenoates and alkynes.
Scheme 60: Gold-catalyzed asymmetric synthesis of 2,3-dihydropyrroles.
Scheme 61: Chiral [NHC–Au(I)]-catalyzed cyclization of enyne.
Scheme 62: Gold-catalyzed hydroaminations and hydroalkoxylations.
Scheme 63: Gold(I)-catalyzed asymmetric hydroalkoxylation of 1,3-dihydroxymethyl-2-alkynylbenzene chromium com...
Scheme 64: Gold-catalyzed synthesis of julolidine derivatives.
Scheme 65: Gold-catalyzed the synthesis of chiral fused heterocycles.
Scheme 66: Gold-catalyzed asymmetric reactions with 3,5-(t-Bu)2-4-MeO-MeOBIPHEP.
Scheme 67: Gold-catalyzed cyclization of o-(alkynyl) styrenes.
Scheme 68: Asymmetric gold(I)-catalyzed redox-neutral domino reactions of enynes.
Scheme 69: Gold(I)-catalyzed enantioselective polyene cyclization reaction.
Scheme 70: Gold(I)-catalyzed enantioselective synthesis of benzopyrans.
Scheme 71: Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols.
Beilstein J. Org. Chem. 2011, 7, 824–830, doi:10.3762/bjoc.7.94
Graphical Abstract
Scheme 1: One-pot hydrozirconation-reductive coupling of allene 2 and nitrile 7.
Scheme 2: Cyclization of allenylnitrile 18.
Figure 1: Coupling constant analysis of the Boc-protected aminopyran ring in 21.
Scheme 3: Proposed chelated transition state model.
Scheme 4: Conversion of homoallylic amines to β-amino acid derivatives.
Beilstein J. Org. Chem. 2011, 7, 582–595, doi:10.3762/bjoc.7.68
Graphical Abstract
Figure 1: Seven out of the ten top selling drugs in the USA in 2009 contain sulfur. Figures in italics are to...
Figure 2: Naturally occurring organosulfur compounds glutathione and (R)-thioterpineol.
Figure 3: Methods for the synthesis of chiral tertiary thiol 1.
Scheme 1: Preparation of thioethers 4 from α-hydroxy esters.
Scheme 2: Nucleophilic substitution in α-aryl-α-hydroxy esters.
Scheme 3: Preparation of α,α-dialkylthioethers.
Scheme 4: Preparation of α-cyanothioacetate 12.
Scheme 5: Synthesis of (R)-(+)-spirobrassinin.
Scheme 6: Opening of cyclic sulfamidates with thiol nucleophiles.
Scheme 7: Synthesis of androgen 20.
Scheme 8: Synthesis of (+)-BE-52440A.
Scheme 9: The Mitsunobu reaction.
Scheme 10: Mitsunobu substitution at a quaternary centre.
Figure 4: Initially assigned structure of hexacyclinol.
Scheme 11: Preparation of thioether 29.
Scheme 12: Thioethers 33 prepared from phosphinites 31.
Scheme 13: Preparation of enantiomerically pure thiol 39.
Scheme 14: Thioethers prepared by a modified Mitsunobu reaction.
Scheme 15: Nucleophilic conjugate addition.
Scheme 16: Asymmetric addition to cyclic enones.
Scheme 17: Preparation of thioether 45.
Scheme 18: Catalytic kinetic resolution of the enantiomers of enone 46.
Scheme 19: Organocatalytic conjugate addition to nitroalkenes 49.
Scheme 20: Preparation of β-amino acid 54.
Scheme 21: Sulfur migration within oxazolidine-2-thiones 56.
Scheme 22: Preparation of thiols 62 by self-regeneration of stereocentres.
Scheme 23: Synthesis of (5R)-thiolactomycin.
Scheme 24: Preparation of tertiary thiols and thioethers via α-thioorganolithiums.
Scheme 25: Diastereoselective methylation of organolithium 71.
Scheme 26: Addition to lithiated thiocarbamate 75.
Scheme 27: Configurational lability in unhindered α-lithiothiocarbamates.
Scheme 28: Configurational stability in bulky α-lithiothiocarbamates.
Scheme 29: Asymmetric functionalisation of secondary benzylic thiocarbamates.
Scheme 30: Methylation of lithioallyl thiocarbamates.
Scheme 31: Asymmetric preparation of tertiary allylic thiols.
Scheme 32: Asymmetric preparation of thiols 96 by aryl migration in lithiated thiocarbamates.
Beilstein J. Org. Chem. 2011, 7, 503–517, doi:10.3762/bjoc.7.59
Graphical Abstract
Scheme 1: Azide–nitrile cycloaddition under batch microwave conditions.
Figure 1: HPLC-UV chromatograms (215 nm) of crude reaction mixtures from the cycloaddition of diphenylacetoni...
Figure 2: HPLC-UV chromatogram (215 nm) showing the decomposition of tetrazole 2 in NMP/AcOH/H2O 5:3:2 (0.125...
Scheme 2: Possible decomposition mechanisms for tetrazole 2 in NMP/AcOH/H2O.
Scheme 3: Reaction steps for the degradation of tetrazole 2 and the corresponding rate equations.
Figure 3: Decomposition of tetrazole 2 at 240 °C in a NMP/AcOH/H2O 5:3:2 mixture (0.125 M) (points: experimen...
Figure 4: Decomposition of tetrazole 2 in a 4 mL resistance heated stainless steel coil at a nominal temperat...
Scheme 4: Mizoroki–Heck coupling under continuous flow conditions.
Scheme 5: Nucleophilic aromatic substitution of 4-fluoro-1-nitrobenzene (15) with pyrrolidine (16) under cont...
Figure 5: Nucleophilic aromatic substitution reaction of 1-fluoro-4-nitrobenzene (15) with pyrrolidine (16) i...
Beilstein J. Org. Chem. 2010, 6, 748–755, doi:10.3762/bjoc.6.94
Graphical Abstract
Scheme 1: Facile reduction of γ-aryl-γ-ketoesters to the corresponding diols with methanolic NaBH4 at room te...
Scheme 2: Facile reduction of γ-aryl-α,β-unsaturated-γ-ketoesters to the diols with methanolic NaBH4 at room ...
Scheme 3: Facile reduction of γ-alkyl-γ-ketoester to the corresponding lactone with methanolic NaBH4 at room ...
Scheme 4: Reduction of methyl o-benzoylbenzoate with methanolic NaBH4.
Scheme 5: Reluctance of ester 8 towards reduction with methanolic NaBH4 at room temperature.
Scheme 6: Intermediacy of a lactone in the formation of diol.
Scheme 7: Diol formation from γ-aryl-α,β-unsaturated-γ-ketoester through the intermediacy of a saturated lact...
Figure 1: Mechanistic rationale for diol formation during the reduction of a γ-aryl-α,β-unsaturated-γ-ketoest...
Scheme 8: Intermediacy of γ-aryl-α,β-unsaturated-γ-hydroxyester during the reduction of γ-aryl-α,β-unsaturate...
Scheme 9: Reduction of γ-aryl-α,β-anti-dibromo-γ-ketoester with methanolic NaBH4.
Scheme 10: Intermediacy of γ-aryl-α,β-unsaturated-γ-hydroxyester during the reduction of γ-aryl-α,β-anti-dibro...
Scheme 11: Chemoselective reduction of keto group in the presence of ester moiety where structural rigidity pr...
Beilstein J. Org. Chem. 2010, 6, 830–845, doi:10.3762/bjoc.6.92
Graphical Abstract
Figure 1: Structure of 3,6-diphenyl-substituted 2,5-diketopyrrolo[3,4-c]pyrrole (DPP).
Scheme 1: Synthesis of DPP monomers.
Figure 2: Plot of current density and light intensity versus voltage of polymer light-emitting diode containi...
Scheme 2: Pd-catalyzed coupling reactions for preparation of DPP-containing polymers.
Figure 3: Optical properties of some diphenylDPP-based conjugated polymers.
Figure 4: Optical properties of copolymers P-21 and P-22 based on two isomeric diphenylDPP monomer units (fro...
Figure 5: Absorption spectroelectrochemical plots of P-25 and P-26 as thin films on ITO glass. Scan rate: 100...
Scheme 3: Thiophenyl-DPP-based polymers.
Beilstein J. Org. Chem. 2010, 6, No. 42, doi:10.3762/bjoc.6.42
Graphical Abstract
Scheme 1: Deprotection of 3-alkoxypyridinols 1 to pyridine-3,4-diols 2. aMethod a: Pd/C, H2, MeOH, rt, 1 d; b...
Figure 1: X-ray crystal structure of compound 2c/2c′.
Scheme 2: Conversion of pyridine-3,4-diols 2 into pyridinediyl bistriflates or -nonaflates 3. a) Et3N, Rf2O, ...
Scheme 3: Sonogashira couplings of pyridinediyl bis(perfluoroalkanesulfonates) 3. a) Pd(PPh3)4 [or Pd(OAc)2/P...
Figure 2: Absorption and fluorescence spectra of compounds 4b and 4c.
Beilstein J. Org. Chem. 2010, 6, No. 6, doi:10.3762/bjoc.6.6
Graphical Abstract
Scheme 1: AlCl3-mediated reaction between amyl chloride and benzene as developed by Friedel and Crafts.
Figure 1: Most often used metal salts for catalytic FC alkylations and hydroarylations of arenes.
Figure 2: 1,1-diarylalkanes with biological activity.
Scheme 2: Alkylating reagents and side products produced.
Scheme 3: Initially reported TeCl4-mediated FC alkylation of 1-penylethanol with toluene.
Scheme 4: Sc(OTf)3-catalyzed FC benzylation of arenes.
Scheme 5: Reductive FC alkylation of arenes with arenecarbaldehydes.
Scheme 6: Iron(III)-catalyzed FC benzylation of arenes and heteroarenes.
Scheme 7: A gold(III)-catalyzed route to beclobrate.
Scheme 8: Catalytic FC-type alkylations of 1,3-dicarbonyl compounds.
Scheme 9: Iron(III)-catalyzed synthesis of phenprocoumon.
Scheme 10: Bi(OTf)3-catalyzed FC alkylation of benzyl alcohols developed by Rueping et al.
Scheme 11: (A) Bi(OTf)3-catalyzed intramolecular FC alkylation as an efficient route to substituted fulvenes. ...
Scheme 12: FC-type glycosylation of 1,2-dimethylindole and trimethoxybenzene.
Scheme 13: FC alkylation with highly reactive ferrocenyl- and benzyl alcohols. The reaction proceeds even with...
Scheme 14: Reductive FC alkylation of arenes with benzaldehyde and acetophenone catalyzed by the Ir-carbene co...
Scheme 15: Formal synthesis of 1,1-diarylalkanes from benzyl alcohols and styrenes.
Scheme 16: (A) Mo-catalyzed hydroarylation of styrenes and cyclohexenes. (B) Hydroalkylation–cyclization casca...
Scheme 17: Bi(III)-catalyzed hydroarylation of styrenes with arenes and heteroarenes.
Scheme 18: BiCl3-catalyzed ene/FC alkylation reaction cascade – A fast access to highly arylated dihydroindene...
Scheme 19: Au(I)/Ag(I)-catalyzed hydroarylation of indoles with styrenes, aliphatic and cyclic alkenes.
Scheme 20: First transition-metal-catalyzed ortho-hydroarylation developed by Beller et al.
Scheme 21: (A) Ti(IV)-mediated rearrangement of an N-benzylated aniline to the corresponding ortho-alkylated a...
Scheme 22: Dibenzylation of aniline gives potentially useful amine-based ligands in a one-step procedure.
Scheme 23: FC-type alkylations with allyl alcohols as alkylating reagents – linear vs. branched product format...
Scheme 24: (A) First catalytic FC allylation and cinnamylation using allyl alcohols and its derivatives. (B) E...
Scheme 25: FC allylation/cyclization reaction yielding substituted chromanes.
Scheme 26: Synthesis of (all-rac)-α-tocopherol utilizing Lewis- and strong Brønsted-acids.
Scheme 27: Au(III)-catalyzed cinnamylation of arenes.
Scheme 28: “Exhaustive” allylation of benzene-1,3,5-triol.
Scheme 29: Palladium-catalyzed allylation of indole.
Scheme 30: Pd-catalyzed synthesis of pyrroloindoles from L-tryptophane.
Scheme 31: Ru(IV)-catalyzed allylation of indole and pyrroles with unique regioselectivity.
Scheme 32: Silver(I)-catalyzed intramolecular FC-type allylation of arenes and heteroarenes.
Scheme 33: FC-type alkylations of arenes using propargyl alcohols.
Scheme 34: (A) Propargylation of arenes with stoichiometric amounts of the Ru-allenylidene complex 86. (B) Fir...
Scheme 35: Diruthenium-catalyzed formation of chromenes and 1H-naphtho[2,1-b]pyrans.
Scheme 36: Rhenium(V)-catalyzed FC propargylations as a first step in the total synthesis of podophyllotoxin, ...
Scheme 37: Scandium-catalyzed arylation of 3-sulfanyl- and 3-selanylpropargyl alcohols.
Scheme 38: Synthesis of 1,3-diarylpropynes via direct coupling of propargyl trichloracetimidates and arenes.
Scheme 39: Diastereoselective substitutions of benzyl alcohols.
Scheme 40: (A) First diastereoselective FC alkylations developed by Bach et al. (B) anti-Selective FC alkylati...
Scheme 41: Diastereoselective AuCl3-catalyzed FC alkylation.
Scheme 42: Bi(OTf)3-catalyzed alkylation of α-chiral benzyl acetates with silyl enol ethers.
Scheme 43: Bi(OTf)3-catalyzed diastereoselective substitution of propargyl acetates.
Scheme 44: Nucelophilic substitution of enantioenriched ferrocenyl alcohols.
Scheme 45: First catalytic enantioselective propargylation of arenes.