Search results

Search for "catalytic" in Full Text gives 1619 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • reactions. Although the range of substrates for different C–H nucleophiles remains restricted, in recent years, copper-catalyzed oxidative coupling reactions between different C–H nucleophiles have been established. There are several common valence changes of copper in the catalytic process [44][45][46][47
  • benzylic ethers occurs at room temperature in the presence of Cu(OTf)2/InCl3 as catalysts and DDQ as oxidant (Scheme 3) [51]. By this route, a series of 2-alkoxymalonate diester derivatives was synthesized through direct CDC reaction. The mechanism study showed that the first step of the catalytic cycle
  • through double C(sp3)–H/C(sp3)–H functionalization using 2,2,6,6-tetramethyl-N-oxopiperidin-1-ium tetrafluoroborate (T+BF4−) salt as the oxidant (Scheme 5) [53]. A catalytic amount of Ac2O played a significant role in the reaction, which can significantly improve the yield and selectivity of the reaction
PDF
Album
Review
Published 06 Sep 2023

Metal catalyst-free N-allylation/alkylation of imidazole and benzimidazole with Morita–Baylis–Hillman (MBH) alcohols and acetates

  • Olfa Mhasni,
  • Jalloul Bouajila and
  • Farhat Rezgui

Beilstein J. Org. Chem. 2023, 19, 1251–1258, doi:10.3762/bjoc.19.93

Graphical Abstract
  • , Yang et al. [18][19] have developed a catalytic system involving Pd/Ti(OiPr)4 or Pd/carboxylic acid for the direct allylation of anilines with alcohols. The synthesis of N-allylimidazole derivatives 3 has been previously carried out using acyclic MBH adducts bearing good leaving groups, such as bromide
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2023

Acetaldehyde in the Enders triple cascade reaction via acetaldehyde dimethyl acetal

  • Alessandro Brusa,
  • Debora Iapadre,
  • Maria Edith Casacchia,
  • Alessio Carioscia,
  • Giuliana Giorgianni,
  • Giandomenico Magagnano,
  • Fabio Pesciaioli and
  • Armando Carlone

Beilstein J. Org. Chem. 2023, 19, 1243–1250, doi:10.3762/bjoc.19.92

Graphical Abstract
  • nitroalkene derivatives with low reagent excess and high enantioselectivity; this reaction represents the first step in the Enders triple cascade catalytic cycle. The use of acetaldehyde in a two-component cascade reaction was previously reported by Enders [27]; however, the scope of this reaction is limited
  • proved to yield the desired product, indicating that the catalytic system may indeed be applicable. Lowering the amount of organocatalyst 1 to 10 mol % (Table 1, entry 2) resulted in a decrease of both yield and selectivity. Based on the results obtained (Table 1, entry 2) and the reaction conditions
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • center. Subsequent reoxidation of the metal with coordination of a new equivalent of anionic ligand allows for the RLT complex to be regenerated, making this strategy inherently compatible with catalysis. Building on this, one of the most important examples of catalytic RLT can be found in the human
  • demonstrated to be particularly privileged in delivery of various ligands to alkyl radicals (Scheme 2). These developments have been supported by discovery of the compatibility of RLT with many different reaction paradigms leading to alkyl radical intermediates under catalytic conditions, including radical
  • the area was revitalized the early 2010s with the advent of Stephenson’s photoredox catalytic methods which dramatically simplified reaction conditions [29][30], driving ongoing interest in this mechanistic approach [31]. Our group recently devised a dual catalytic method which combines the RLT
PDF
Album
Perspective
Published 15 Aug 2023

Unravelling a trichloroacetic acid-catalyzed cascade access to benzo[f]chromeno[2,3-h]quinoxalinoporphyrins

  • Chandra Sekhar Tekuri,
  • Pargat Singh and
  • Mahendra Nath

Beilstein J. Org. Chem. 2023, 19, 1216–1224, doi:10.3762/bjoc.19.89

Graphical Abstract
  • ]quinoxalinoporphyrins in good yields via a sequential reaction of copper(II) 2,3-diamino-5,10,15,20-tetraarylporphyrins, 2-hydroxynaphthalene-1,4-dione, aromatic aldehydes, and dimedone in the presence of a catalytic amount of trichloroacetic acid in chloroform at 65 °C. Further, the newly prepared copper(II
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2023
Graphical Abstract
  • decoupled; the water oxidation and carbon dioxide reduction occur at different catalytic centers (locations) and in some cases at different times [8]. Decoupling is generally facilitated by the accumulation of charge or reacted species that can be stored. In artificial photosynthesis decoupling is also
  • photocatalysis. Cyclic voltammetry carried out in standard conditions for mimicking an acetonitrile system had not been close enough to the catalytic conditions to get the required redox potentials. The difference between the oxidation potential of a sacrificial donor and the reduction potential of the excited
  • reduction consumed the sacrificial donor methanol to form formic acid and formaldehyde [56]. This system is interesting for a number of reasons. Rather than intermediate redox mediators shuttling charge between two photocatalytic assemblies, Ishitani, Domen, and co-workers covalently connected the catalytic
PDF
Album
Supp Info
Review
Published 08 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • which strategy is a more suitable fit for a given purpose. In order to do so, the scope of our Review is thus restricted to electron transfer redox processes and does not include energy transfer or atom/group transfer processes. Particularly interesting are instances where the same active catalytic
  • PEC, a main theme of this Review. Protocols for sensitization-initiated electron transfer (SenI-ET) relying on a dual catalytic system of transition-metal based photocatalysts and pyrenes to generate highly reductive species are also excluded as such reported transformations are now equally achievable
  • ), where the electrochemical and photochemical steps are intimately involved within the same catalytic cycle, as subsequent steps. This broadly separates into two subcategories, “radical ion e-PRC” (Figure 2, right) and “recycling e-PRC”. Radical ion e-PRC typically implicates electrogenerated radical ion
PDF
Album
Review
Published 28 Jul 2023
Graphical Abstract
  • 2004. In this methodology, a 1,1’-bi-2-naphthol (BINOL)-derived chiral phosphoric acid P1 was used as the catalytic reagent to couple 2-methoxyfuran (1) and N-Boc-protected aldimines 2 to incorporate an aza-tertiary stereocenter into the 2’ position of the heteroaromatic products 3 (Scheme 1) [24
  • various asymmetric chemical transformations. These compounds play a dual role in the catalytic cycle due to their intrinsic Brønsted acidity and the ability to H-bond formation. Organophosphoric acids can perform as both H-bond acceptors and donors. 1,1’-Bi-2-naphthol (BINOL) and 1,1’-spirobiindane-7,7
  • for the functionalization of the C3–H bond in indoles 9 in the presence of BINOL-derived chiral phosphoric acid P6 as the catalytic agent. They utilized trifluoromethyl ester-substituted N-unprotected imine 15 as the potential electrophile to install an aza-quaternary stereocenter in the C3 position
PDF
Album
Review
Published 28 Jun 2023

Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach

  • Dileep Kumar Singh and
  • Rajesh Kumar

Beilstein J. Org. Chem. 2023, 19, 928–955, doi:10.3762/bjoc.19.71

Graphical Abstract
  • chemoselective procedure in which the iodine counterion and MeCN played key roles in the unique reactivity of this catalytic system. To optimize the reaction conditions, many catalysts, solvents, and temperatures were studied and finally, 10 mol % MgI2∙(OEt2)n as the catalyst, CH3CN as the solvent, and 80 °C
  • 28 with squaric acid afforded anilinium squarate salt A. Further, a catalytic amount of squaric acid hydrolyzes 2,5-dimethoxytetrahydrofuran (2) to give a 1,4-dicarbonyl compound B in water. Finally, N-phenylpyrrole 29 was obtained by condensation of activated 1,4-dicarbonyl compound with aniline. In
  • magnetically recoverable by simple magnetic decantation. In addition, the catalytic activity of the catalyst remains unaltered after six consecutive cycles (Figure 3). Using this catalyst, various nitrogen-substituted pyrrole derivatives 31 were synthesized in 55–96% yields through the reaction between various
PDF
Album
Review
Published 27 Jun 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • their ability to participate in either redox step of the catalytic cycle [42][43][44][45]. For example, the main use of α-amino acids in syntheses via photoredox catalysis is as readily available precursors of regioselective α-amino radicals by decarboxylative transformations, by oxidation of the
  • intramolecularly with the C4-pendant prenyl side-chain previously oxidized [76]. Closure of the photoredox catalytic cycle would then involve SET reduction, and protonation would deliver the desired carbocyclic ring (Figure 1c). If this cyclization reaction could be realized in either way, it would shorten the
  • ]. Regioselective palladium-catalyzed prenylation of 2 with prenylboronic acid pinacol ester and subsequent hydrolysis with LiOH provided the linear prenylated acid 4 in good yield. Coupling acid 4 with N-hydroxyphthalimide using DCC and a catalytic amount of DMAP afforded the key intermediate 5 in 59% yield. With
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO2F2)

  • Xian-Lin Chen and
  • Hua-Li Qin

Beilstein J. Org. Chem. 2023, 19, 901–908, doi:10.3762/bjoc.19.68

Graphical Abstract
  • 1,4-dioxane the transformations performed the best (Table 1, entries 3–5). A series of copper catalysts such as CuI, CuCN, and Cu2O was screened, in which some showed good catalytic activity (Table 1, entries 6–9), and Cu2O was identified as the most effective catalyst for the desired transformation
PDF
Album
Supp Info
Letter
Published 22 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • also found to have a higher catalytic activity for the ortho-alkylation of pyridines with styrenes to give the linear alkylated products (5b,c, Scheme 2). Further, the authors proposed that the C–H bond activation could be the rate limiting step based on kinetic isotope experiments (KIE). The proposed
  • cationic Zr complexes provided good transformations, probably due to good accessibility of the coordination site and an increased Lewis acidity of the metal center. The authors also demonstrated that this catalytic system also catalyzes the alkylation of benzylic C–H bonds (C(sp3)–H) of various
  • including transition metals and rare earth metals has been described and some other organometallic systems also were shown to have catalytic reactivity. Adopting this catalytic reactivity of organometallics and also the special bidentate nature of phosphinoamide ligands, in 2021, Chen and group [58
PDF
Album
Review
Published 12 Jun 2023

Honeycomb reactor: a promising device for streamlining aerobic oxidation under continuous-flow conditions

  • Masahiro Hosoya,
  • Yusuke Saito and
  • Yousuke Horiuchi

Beilstein J. Org. Chem. 2023, 19, 752–763, doi:10.3762/bjoc.19.55

Graphical Abstract
  • at room temperature (Table 1, entry 1). However, four kinds of catalysts were used, and a simpler catalytic system would be preferable. The highly reactive catalyst, 9-azanoradamantane N-oxyl (nor-AZADO), was tried with NaNO2 as a cocatalyst, which resulted in completion of the reaction in 60 min
  • Pd(OAc)2 did not dissolve in toluene even with pyridine. As a substitute for TEMPO, 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) was tried (Table 1, entries 9 and 10) [45]. Although the reactivity was improved compared with the TEMPO catalytic system in Table 1, entries 3–5, the DDQ catalytic system
  • made it difficult to confirm the solubility due to the deep black color of the reaction mixture. This can increase the risk of clogging under continuous-flow conditions due to undissolved catalyst. From this reaction screening, we concluded that Table 1, entry 3 was the most suitable catalytic system
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2023

Synthesis of imidazo[1,2-a]pyridine-containing peptidomimetics by tandem of Groebke–Blackburn–Bienaymé and Ugi reactions

  • Oleksandr V. Kolomiiets,
  • Alexander V. Tsygankov,
  • Maryna N. Kornet,
  • Aleksander A. Brazhko,
  • Vladimir I. Musatov and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2023, 19, 727–735, doi:10.3762/bjoc.19.53

Graphical Abstract
  • 24 hours at room temperature in DMF with catalytic amounts of HClO4. The yield of compound 4a in this case was 76%. Then new heterocyclic acids were used as reagents for the Ugi four-component reaction. Due to the rather low solubility of the acids in methanol, it was necessary to increase the
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • of o-nitrotoluene (22) Reduction to 2,2'-diaminobibenzyl (20) Ring-closing via amine condensation Catalytic dehydrogenation 1.1 Oxidative coupling of o-nitrotoluene (22) and reduction to 2,2'-diaminobibenzyl (20) The preparation of dinitrobibenzyl (21) can be achieved by the oxidative coupling of
  • transition metal (Ni, Fe, V) porphyrin catalysts and oxygen. Catalytic reduction (H2, Pd/C) affords 2,2'-diaminobibenzyl (20) in the subsequent step [28]. 1.2 Ring-closing via amine condensation The initial synthesis of 10,11-dihydro-5H-dibenzo[b,f]azepine (2a) was reported in 1899 by Thiele and Holzinger
  • [36] via the polyphosphoric acid (PPA) catalysed cyclisation of 2,2'-diaminobibenzyl (20) at elevated temperatures (Scheme 3) [37][38]. 1.3 Catalytic dehydrogenation An early synthesis of 5H-dibenzo[b,f]azepine (1a) involved the gas phase dehydrogenation of 10,11-dihydro-5H-dibenzo[b,f]azepine (2a) to
PDF
Album
Review
Published 22 May 2023

Synthesis of medium and large phostams, phostones, and phostines

  • Jiaxi Xu

Beilstein J. Org. Chem. 2023, 19, 687–699, doi:10.3762/bjoc.19.50

Graphical Abstract
  • the catalytic antibody [24]. They are also potential chiral ligands in asymmetric catalysis [25] (Figure 1). Cyclizations and annulations are two major strategies for the synthesis of medium and large phostam, phostone, and phostine derivatives. The cyclizations have been applied in the construction
  • (71b) and 2-ethoxy-3-methyl-5-methylene-5,6,7-trihydro-1,2-oxaphosphepine 2-oxide (72b) in 85:15 in a total yield of 64% (Scheme 15) [36][37]. To prepare a hapten for the production of the catalytic antibody for the catalytic formation of a 14-membered lactone, because it is very difficult for the
PDF
Album
Review
Published 15 May 2023

Synthesis, structure, and properties of switchable cross-conjugated 1,4-diaryl-1,3-butadiynes based on 1,8-bis(dimethylamino)naphthalene

  • Semyon V. Tsybulin,
  • Ekaterina A. Filatova,
  • Alexander F. Pozharskii,
  • Valery A. Ozeryanskii and
  • Anna V. Gulevskaya

Beilstein J. Org. Chem. 2023, 19, 674–686, doi:10.3762/bjoc.19.49

Graphical Abstract
  • Supporting Information, File 1, Figure S60). The further alkynylation of compounds 7a–e was carried out using trimethylsilylacetylene and the Pd(PPh3)2Cl2/CuI/Et3N/DMSO catalytic system giving rise to dialkynyl derivatives 10a–e in high yields (Scheme 2). Column chromatography of trimethylsilyl derivatives
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2023

Photocatalytic sequential C–H functionalization expediting acetoxymalonylation of imidazo heterocycles

  • Deepak Singh,
  • Shyamal Pramanik and
  • Soumitra Maity

Beilstein J. Org. Chem. 2023, 19, 666–673, doi:10.3762/bjoc.19.48

Graphical Abstract
  • degassed conditions with or without water only delivered a trace amount (<5%) of the desired products, indicating that aerial oxygen plays a crucial role in the second catalytic cycle for the conversion of 5 to 3a or 4a (Scheme 3C). To determine the role of zinc acetate, a standard reaction of 1a and 2a in
  • ∙+ then oxidizes the resulting radical II to carbocation III which rearomatizes by losing a proton to generate the intermediate IV and closing the first catalytic cycle. Meanwhile, the bromide ions in the medium undergo anion exchange with the Zn(OAc)2 to release free acetate ions, along with the
PDF
Album
Supp Info
Letter
Published 12 May 2023

Nucleophile-induced ring contraction in pyrrolo[2,1-c][1,4]benzothiazines: access to pyrrolo[2,1-b][1,3]benzothiazoles

  • Ekaterina A. Lystsova,
  • Maksim V. Dmitriev,
  • Andrey N. Maslivets and
  • Ekaterina E. Khramtsova

Beilstein J. Org. Chem. 2023, 19, 646–657, doi:10.3762/bjoc.19.46

Graphical Abstract
  • to the PBTA scaffold is an annulation of benzothiazoles with a pyrrole moiety (Scheme 1). It includes intramolecular cyclizations of benzothiazoles bearing a 3'-chloro substituent at C2 position (Scheme 1, entries 1 and 2) [5][6][7], intramolecular catalytic carbene cascade reactions of propargyl 1,3
  • ] and reactions of 3-acyl-2,3-dihydro-1,3-benzothiazole-2-carbonitriles with acetylenedicarboxylate (Scheme 1, entry 9) [4]. The second group of approaches to the PBTA scaffold is an annulation of o-aminothiophenol with a pyrrolothiazole moiety (Scheme 2). It includes catalytic cascade reactions of o
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • (phosphite/phosphine-pyridine amide, phosphine-sulfoxide, phosphoramidite, MINBOL, see Figure 1) and they usually showed excellent diastereoselectivity (dr >20:1). The catalytic systems even with low catalyst loadings tolerated both electron-donating and withdrawing groups on the aromatic substituents
  • . systematically modified atropisomeric C1-symmetric stack ligands to identify suitable catalytic systems for a highly enantioselective synthesis of organoboranes (Scheme 42) [83]. Their best attempt to realize a tandem borylation/aldol cyclization reaction resulted in 72% yield, 90% ee, and a diastereomeric ratio
PDF
Album
Review
Published 04 May 2023

C3-Alkylation of furfural derivatives by continuous flow homogeneous catalysis

  • Grédy Kiala Kinkutu,
  • Catherine Louis,
  • Myriam Roy,
  • Juliette Blanchard and
  • Julie Oble

Beilstein J. Org. Chem. 2023, 19, 582–592, doi:10.3762/bjoc.19.43

Graphical Abstract
  • -situ imine formation is currently impossible with catalytic or stoichiometric amounts of amine due to decarbonylation of furfural under the reaction conditions [21]. We thus present here an adaptation of our Ru(0)-catalyzed C3-alkylation strategy of furfural derivatives to a continuous flow system
  • 2 (Table 2, entry 1). This allowed us to conclude that pressure does not have an impact on this reaction, since no noticeable difference could be reported when going from ≈130 bar to ≈7.5 bar. The catalytic loading for comp4 could also be decreased to 1 mol % (Table 2, entries 1, 2, and 4), whereas
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2023

Access to cyclopropanes with geminal trifluoromethyl and difluoromethylphosphonate groups

  • Ita Hajdin,
  • Romana Pajkert,
  • Mira Keßler,
  • Jianlin Han,
  • Haibo Mei and
  • Gerd-Volker Röschenthaler

Beilstein J. Org. Chem. 2023, 19, 541–549, doi:10.3762/bjoc.19.39

Graphical Abstract
  • then involved in the next catalytic cycle and thus removed from the equilibrium between Int4 and Pr + CuI. In addition, since TS2 is an early transition state and the potential is concomitantly very flat, only TS2_2 was found by means of regular optimization towards a first order saddle point. For the
PDF
Album
Supp Info
Letter
Published 25 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • -trifluoromethyl substituent forming the ketone product in <10% yield. While substitution of the norbornene was tolerated, both EWGs and EDGs hindered the reaction. Upon several mechanistic studies, the authors proposed the catalytic cycle begins with the oxidative addition of the active Ni(0) catalyst to imide 27
  • photoexcitation of the photosensitizer 43 to form 44 which can oxidize aniline 36a to give radical cation 46 (Scheme 7). Deprotonation by DBU produces the radical 40. The radical anion photosensitizer 45 can reduce Ni(I) to Ni(0), closing the first catalytic cycle. The Ni(0) complex can undergo oxidative addition
  • –Cu species 60 which after electrophilic amination with the O-benzoylhydroxylamine 54 liberates the final aminoborylated product 55 and a benzoyl–Cu complex 61. To close the catalytic cycle a transmetalation of 61 with LiOt-Bu regenerates the active catalyst. In 2017, Xiao and Fu studied the Cu
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • the reagent IX and a catalytic amount of PdCl2, they succeeded in the functionalization of acrylamides 33 derived from 8-aminoquinoline. Within these mild conditions, α-arylacrylamides substituted at para-, meta-, and ortho-positions were readily difluoromethylthiolated (34a–g, 81–95% yields). This
  • palladium catalysis Very recently, the palladium-catalyzed trifluoromethylselenolation of (hetero)aromatic and olefinic derivatives has been investigated by the group of Billard using similar catalytic systems as those depicted for the trifluoromethylthiolation reactions. Indeed, using amides 37 derived
  • -designed catalytic systems and suitable fluorinating sources were the key of success for these major developments. Despite these advances, synthetic challenges still need to be overcome. These synthetic tools are so far still restricted to some fluorinated moieties and extension to other high value-added
PDF
Album
Review
Published 17 Apr 2023

Mechanochemical solid state synthesis of copper(I)/NHC complexes with K3PO4

  • Ina Remy-Speckmann,
  • Birte M. Zimmermann,
  • Mahadeb Gorai,
  • Martin Lerch and
  • Johannes F. Teichert

Beilstein J. Org. Chem. 2023, 19, 440–447, doi:10.3762/bjoc.19.34

Graphical Abstract
  • been shown to be active in a variety of reduction/hydrogenation transformations employing dihydrogen as terminal reducing agent. Keywords: ball mill; bifunctional catalysis; catalytic hydrogenations; copper; mechanochemical synthesis; N-heterocyclic carbenes; Introduction Prominent goals of green
  • an ester reduction with H2 as terminal reducing agent utilizing bifunctional copper(I)/NHC complex 5 bearing a guanidine moiety as additional catalytic unit [48]. This catalyst acts by employing the copper(I)/NHC complex for H2 activation on the one hand and by using the guanidine subunit for
  • removed in order to maintain reproducible results in subsequent catalytic hydrogenations [48]. We deemed this synthetic route unattractive with regards to sustainable synthesis due to the silver waste generated in the process and sought to replace the transmetallation route with a more atom economic
PDF
Album
Supp Info
Letter
Published 14 Apr 2023
Other Beilstein-Institut Open Science Activities