Search results

Search for "[bis(trifluoroacetoxy)iodo]benzene PIFA" in Full Text gives 7 result(s) in Beilstein Journal of Organic Chemistry.

Harnessing tethered nitreniums for diastereoselective amino-sulfonoxylation of alkenes

  • Shyam Sathyamoorthi,
  • Appasaheb K. Nirpal,
  • Dnyaneshwar A. Gorve and
  • Steven P. Kelley

Beilstein J. Org. Chem. 2025, 21, 947–954, doi:10.3762/bjoc.21.78

Graphical Abstract
  • ring was opened in a diastereoselective (SN2 type) and exo-selective manner by a trifluoroacetate anion. The trifluoroacetate anion was conveniently derived from (bis(trifluoroacetoxy)iodo)benzene (PIFA), which was used as the stoichiometric oxidant in the reaction. Overall, this amounted to a highly
PDF
Album
Supp Info
Full Research Paper
Published 19 May 2025

Divergent role of PIDA and PIFA in the AlX3 (X = Cl, Br) halogenation of 2-naphthol: a mechanistic study

  • Kevin A. Juárez-Ornelas,
  • Manuel Solís-Hernández,
  • Pedro Navarro-Santos,
  • J. Oscar C. Jiménez-Halla and
  • César R. Solorio-Alvarado

Beilstein J. Org. Chem. 2024, 20, 1580–1589, doi:10.3762/bjoc.20.141

Graphical Abstract
  • , Br) [26][27][28][29][30][31]. So far, different protocols for the halogenation of arenes using iodine(III) reagents have been described, mainly using (diacetoxyiodo)benzene (PIDA)/TMSCl, PIDA/TMSBr [32], and [bis(trifluoroacetoxy)iodo]benzene (PIFA)/TMSBr [33]. We have recently developed a new
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

The PIFA-initiated oxidative cyclization of 2-(3-butenyl)quinazolin-4(3H)-ones – an efficient approach to 1-(hydroxymethyl)-2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones

  • Alla I. Vaskevych,
  • Nataliia O. Savinchuk,
  • Ruslan I. Vaskevych,
  • Eduard B. Rusanov,
  • Oleksandr O. Grygorenko and
  • Mykhailo V. Vovk

Beilstein J. Org. Chem. 2021, 17, 2787–2794, doi:10.3762/bjoc.17.189

Graphical Abstract
  • of natural product-like compound libraries. Keywords: [bis(trifluoroacetoxy)iodo]benzene PIFA; nitrogen heterocycles; oxidative cyclization; pyrrolo[1,2-a]quinazolines; Introduction An important design concept in current drug discovery includes structural modifications of naturally occurring
PDF
Album
Supp Info
Letter
Published 25 Nov 2021

Synthesis of triphenylene-fused phosphole oxides via C–H functionalizations

  • Md. Shafiqur Rahman and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2020, 16, 524–529, doi:10.3762/bjoc.16.48

Graphical Abstract
  • (trifluoroacetoxy)iodo]benzene] (PIFA) and BF3·OEt2 in dichloromethane at −78 °C afforded, after 12 h, the desired cyclized product 8a in 59% yield. The reaction could be performed on a 0.5 mmol scale in a similar yield of 58%. Note that other typical reagents used for the Scholl reaction, such as DDQ/CF3CO2H
  • furnished the phosphole-fused ortho-teraryl products 7a–c in moderate to high yields. With the phosphole-fused ortho-teraryl compounds 7 in hand, we next examined their cyclization into triphenylene derivatives by the Scholl reaction (Scheme 3) [30]. The reaction of 7a (0.1 mmol) in the presence of [bis
PDF
Album
Supp Info
Letter
Published 27 Mar 2020

Synthesis of spirocyclic scaffolds using hypervalent iodine reagents

  • Fateh V. Singh,
  • Priyanka B. Kole,
  • Saeesh R. Mangaonkar and
  • Samata E. Shetgaonkar

Beilstein J. Org. Chem. 2018, 14, 1778–1805, doi:10.3762/bjoc.14.152

Graphical Abstract
  • β-substituted 3-(methoxyphenyl)-N-methoxypropionamides 46 with [bis(trifluoroacetoxy)iodo]benzene (PIFA, 31) in dichloromethane (Scheme 14). The reactions were carried out at low temperature and spirolactams 47 were achieved in high yields with up to 96% enantiomeric excess. Furthermore, these
PDF
Album
Review
Published 17 Jul 2018

Iodine(III)-mediated halogenations of acyclic monoterpenoids

  • Laure Peilleron,
  • Tatyana D. Grayfer,
  • Joëlle Dubois,
  • Robert H. Dodd and
  • Kevin Cariou

Beilstein J. Org. Chem. 2018, 14, 1103–1111, doi:10.3762/bjoc.14.96

Graphical Abstract
  • )iodobenzene (DIB) and lithium bromide yield a dibromo adduct (Scheme 1, reaction 2), whereas a combination of (bis(trifluoroacetoxy)iodo)benzene (PIFA) and tetra-n-butylammonium bromide (TBAB) gives bromo(trifluoro)acetoxylated 3a (Scheme 1, reaction 3) [16]. We then decided to further explore the synthetic
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Synthesis of the tetracyclic core of Illicium sesquiterpenes using an organocatalyzed asymmetric Robinson annulation

  • Lynnie Trzoss,
  • Jing Xu,
  • Michelle H. Lacoske and
  • Emmanuel A. Theodorakis

Beilstein J. Org. Chem. 2013, 9, 1135–1140, doi:10.3762/bjoc.9.126

Graphical Abstract
  • ) reductive deoxygenation with LiEt3BH (super hydride). The thioketal protecting group was then removed under oxidative conditions with [bis(trifluoroacetoxy)iodo]benzene (PIFA) to yield ketone 10 in good yield (66% over three steps, Scheme 2) [78]. This approach allowed us to produce a sufficient amount of
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2013
Other Beilstein-Institut Open Science Activities