Search results

Search for "defects" in Full Text gives 692 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Structural and magnetic properties of microwave-synthesized reduced graphene oxide/VO2/Fe2O3 nanocomposite

  • Sumanta Sahoo,
  • Ankur Sood and
  • Sung Soo Han

Beilstein J. Nanotechnol. 2025, 16, 921–932, doi:10.3762/bjnano.16.70

Graphical Abstract
  • indicate the alteration of the components in the NCs. The formation of defects is a prime characteristic of the MW synthesis of graphene materials. The implementation of MW irradiation generates an enormous amount of heat, which further creates structural defects and disorders in the graphene structure
  • . The intensity ratio of the D and G bands (ID/IG ratio) was calculated to evaluate the defects in the NCs. For GV, the ID/IG ratio is found to be 0.44. However, the ratio is increased to 0.88 for GVF NC. Such a significant enhancement in the ID/IG ratio indicates that the introduction of Fe-based
  • components caused more disorder and defects in the carbon structure [36]. Furthermore, the peak at ≈2700 cm−1 represents the characteristic 2D band of graphene. The Raman pattern of rGO represents such characteristic D band at ≈1343 cm−1, G band at ≈1582.4 cm−1, and 2D band at ≈2690 cm−1, respectively
PDF
Album
Full Research Paper
Published 20 Jun 2025

Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering

  • Shankar Dutt,
  • Rudradeep Chakraborty,
  • Christian Notthoff,
  • Pablo Mota-Santiago,
  • Christina Trautmann and
  • Patrick Kluth

Beilstein J. Nanotechnol. 2025, 16, 899–909, doi:10.3762/bjnano.16.68

Graphical Abstract
  • quality, with a size distribution of ≈8.3%. While this size distribution is narrow compared to many nanopore systems [50], thermal SiO2 nanopores show an even narrower size distribution of only ≈2.1%. The higher dispersity observed in PECVD-based nanopores could be the result of defects or localized
PDF
Album
Full Research Paper
Published 12 Jun 2025

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • crystallites and the rough PCD film. Various growth defects, including pits, cracks, steps, and protrusions are present on the diamond faces. The secondary nucleation of diamond caused the formation of submicron-sized diamond grains and smoothing of the shape of large crystals. Raman spectroscopy revealed high
  • readily transforms to sp2-hybridized carbon. For excitation at 830 eV, the sp2 peak is quite broad (1.1 eV) compared to that in the spectrum of a highly ordered graphite crystal (0.6 eV) [42]. The reason for this is the high density of defects in the carbon layer formed on the Ni-PCD surface during
  • −1 from C=C stretching vibrations. This indicates that in our experimental conditions, the partial graphitization of bare PCD film occurs more actively in the areas with small crystallites enriched with boundaries and defects, while large crystallites retain their diamond structure. The out-of-focus
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • control material properties by inducing damage and introducing defects in the host matrix in a controlled manner [8]. It offers the advantage of controlling the amount of energy transferred to the host system by selecting the desired ion energy, mass, and fluence [9]. Different types of lattice vacancies
  • , defects, and interstitials are induced through the interaction between energetic ions and the host material, resulting in structural modification and thus alteration in lattice dynamics of the host material [10]. The implantation-induced disorder can be qualitatively examined using Raman spectroscopy
  • , which is a well-established and non-destructive method to determine crystal structure, lattice defects, and dynamics. Since ZnO is a polar semiconductor, the phonon–electron interaction produces longitudinal optical (LO) phonon modes, whose long-range behavior considerably affects the efficacy of
PDF
Album
Full Research Paper
Published 11 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • on samples with different defectivity and using techniques with different probing depths suggest that defects can act as polaron trapping and recombination sites and that the excited charge dynamics can be different on the surface and in the bulk of the investigated oxide. The chemical sensitivity of
PDF
Album
Review
Published 10 Jun 2025

Facile one-step radio frequency magnetron sputtering of Ni/NiO on stainless steel for an efficient electrode for hydrogen evolution reaction

  • Ha Huu Do,
  • Khac Binh Nguyen,
  • Phuong N. Nguyen and
  • Hoai Phuong Pham

Beilstein J. Nanotechnol. 2025, 16, 837–846, doi:10.3762/bjnano.16.63

Graphical Abstract
  • ) mode, whereas the peak at 1052 cm−1 is attributed to the 2PLO mode of the Ni–O bonds. These peaks indicate the existence of Ni defects in the Ni/NiO/SS-10 sample, which is favorable for electrocatalytic applications [36][37][38]. Additionally, Figure 4 depicts EDX analysis and proves the uniform
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • and their corresponding diffractograms. The observed contrast variations (with light and dark areas marked in red and green, respectively) indicate differences in elemental distribution, suggesting the presence of distinct phases and crystalline defects, such as twin boundaries and inhomogeneous
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • the alginate implies a slight disordering of the crystal structure of iron oxides. This disorder may result from more structural and local point defects and unsaturated bonds, making it more prone to forming an ionic cross-linking complex. In this context, the coexistence of oxyhydroxide with Fe3
PDF
Album
Full Research Paper
Published 02 Jun 2025

Thickness dependent oxidation in CrCl3: a scanning X-ray photoemission and Kelvin probe microscopies study

  • Shafaq Kazim,
  • Rahul Parmar,
  • Maryam Azizinia,
  • Matteo Amati,
  • Muhammad Rauf,
  • Andrea Di Cicco,
  • Seyed Javid Rezvani,
  • Dario Mastrippolito,
  • Luca Ottaviano,
  • Tomasz Klimczuk,
  • Luca Gregoratti and
  • Roberto Gunnella

Beilstein J. Nanotechnol. 2025, 16, 749–761, doi:10.3762/bjnano.16.58

Graphical Abstract
  • of CrCl3 [2], which can be easily exfoliated and exhibits a slower degradation rate compared to CrI3 or CrBr3[3]. To fully exploit the potential of any material, a detailed understanding of its electronic and structural changes arising from intrinsic and extrinsic defects is crucial [4]. Despite this
  • content of defects such as adatoms, the length of grain boundaries, vacancies, and substitution impurities influence the electrical, magnetic, and electronic properties of the final device [14][15][4]. To name one, the formation of chalcogenide vacancies is often related to the enhanced dissociation of
  • molecular oxygen [16] at the metal species. These defects do not only change the electronic behavior of the sample by modifying the band structure [17]; they are also responsible for Curie temperature deviations, work function modifications [18], and induced long-range magnetic orders (i.e., magnetic band
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • promising, their performance is often limited by surface properties of the III–V semiconductor material, which furthermore can vary for individual nanowires. This includes native oxides on semiconductor surfaces and their possible removal, surface passivation, and interface defects [27]. Therefore, in-depth
  • a weaker in-built potential at the surface. This effect can be expected from surface band bending due to defects or native oxides at the surface. This demonstrates the necessity for both bulk- and surface-sensitive measurements in order to fully understand the local potential distribution in such
  • technologically relevant nanostructure devices. The type and amount of surface oxide and defects can be obtained from XPS peak fitting, as presented in Figure 2c, assuming a Shirley background and Voigt doublet components (more fitting components can be found in [18]). Both the In 4d and P 2p spectra were fitted
PDF
Album
Review
Published 23 May 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • atom %, and the carbon concentration fell to 0 atom %. These reductions in oxygen and carbon impurities are essential for improving the film’s quality, as both elements can introduce defects that degrade the superconducting performance. At a lower nitrogen pressure of 60 mTorr, the atomic
  • TaN film with the MgO substrate is critical for achieving superior superconducting properties, as high crystallinity and minimal defects reduce electron scattering, improving Tc of the film. The combination of cubic phase dominance, epitaxial growth, and precise lattice match with the MgO substrate
PDF
Album
Full Research Paper
Published 22 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • illumination. Our results indicate that the inclusion of BCF has a passivating effect on iodide defects within the devices. Particularly, a major improvement on the diode character of the HTL/perovskite interface was observed, in both spiro-OMeTAD and PTAA cells. The details of device fabrication, ion milling
  • that incorporated BCF can be attributed to the improved conductivity of the HTL material, as well as the passivation of mobile ionic defects. Specifically, these defects are prevented from drifting and accumulating at the interfaces of the perovskite and giving rise to non-radiative recombination sites
  • charge transport to the terminal. Furthermore, as a strong Lewis acid, BCF passivates mobile iodide defects at the perovskite/HTL interface, which act as recombination centers, thus reducing non-radiative recombination losses and improving hole extraction efficiency. These beneficial effects lead to a
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • , its production typically involves harsh chemical treatments, which can introduce defects and impurities. These alterations may negatively affect its desirable properties and compromise its biocompatibility. Previous assessments have demonstrated that the cytotoxicity of these products is mainly
  • yielding high-quality graphene [10][11]. The ability to produce large quantities of FLG with minimal structural defects makes this method particularly well-suited for industrial applications, including those in the dental field [4][12]. A key aspect of LPE is the use of surfactants to prevent the
  • few defects The synthesis process combined graphite and TA in a 10:1 mass ratio in an aqueous medium, followed by probe ultrasonication enhanced by magnetic stirring, resulting in a stable colloid as shown in Figure S3, Supporting Information File 1. The polyphenolic structure of tannic acid
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • suitable hydrophilicity for cell proliferation and promoted higher keratinocyte proliferation and viability after seven days compared to pure PCL and SF nanofibers [68]. In another study, Lee et al. explored the use of 3D electrospun SF nanofibers as a dermal substitute for full-thickness skin defects
  • improved osteoblastic differentiation as evidenced by the upregulation of specific osteogenic genes [88]. Zhou et al. improved bone tissue engineering by creating a composite biomimetic scaffold incorporating autologous concentrated growth factor (CGF) to repair bone defects. Freeze drying and chemical
  • ) on these scaffolds and adding CGF. The results demonstrated that the SF/CS/nHA scaffold combined with CGF promoted better cell adhesion, proliferation, and osteogenic differentiation of BMSCs than other groups. In vivo, a rabbit model with major bone defects was used to assess the scaffold’s
PDF
Album
Review
Published 24 Apr 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • nucleation rate, which in turn increases the catalyst particle size and the amount of free carbon atoms, producing CNFs with larger diameters and amorphous carbon. According to Raman analysis, the grown CNFs have a high number of defects, which may be good for applications where defective nanomaterials are
  • great importance. Defective CNFs are utilized to build composites with specific thermal conductivities as part of thermal insulation materials. They can also be used to make materials that combine strength and flexibility, for example, in electronics or damping devices. The presence of defects in CNFs
  • 1350 cm−1 for ID and 1592 cm−1 for IG. Generally, the formation of sp2-hybridized carbon atoms is often correlated to Raman spectra having G peaks at 1550–1600 cm−1, indicating the crystallinity. Similarly, a D peak at 1250–1450 cm−1 often correlates to defects and disorders of the sp2-hybridized
PDF
Album
Full Research Paper
Published 23 Apr 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • and gamma radiation can induce lattice defects and lower the device efficiency [7]. Swift heavy ion (SHI) irradiation experiments provide valuable insights into the radiation stability of the transformed B2 phase, which is essential for the future utilization of these composite materials in space
  • of the O K edge spectrum. This attenuation suggests that O ion irradiation diminishes the likelihood of core-level electronic transitions from O 1s to the hybridized Zn 4s–O 2p orbitals. It is plausible that O ion irradiation generates oxygen vacancies (VO) at lattice sites and introduces defects
  • exhibit a complete transformation compared to those of the CZ900_Pris sample. The introduction of a substantial number of defects may have relaxed the dipole selection rule, resulting in a destructive interference pattern within the multiple scattering signal. Such out-of-phase oscillations can lead to
PDF
Album
Full Research Paper
Published 17 Apr 2025

Water in nanoporous hexagonal boron nitride nanosheets: a first-principles study

  • Juliana A. Gonçalves,
  • Ronaldo J. C. Batista and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2025, 16, 510–519, doi:10.3762/bjnano.16.39

Graphical Abstract
  • formation energy per atom, suggesting their potential for experimental formation. Indeed, Pham et al. [34] observed both types of pores and noted that parallelogram- and hexagon-shaped defects with zigzag edges become prevalent at temperatures exceeding 700 °C, in contrast to the triangular defects
PDF
Album
Full Research Paper
Published 11 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • ][20][21]. Ahmed et al. [13] investigated the effect of helium ion irradiation on the structural and electrical properties of Mo thin films. They noted that α-particles create defects that reduce charge carrier mobility, and the hardness increased from low to high ion fluence. Hoffman et al. [14
  • thin films due to lattice distortions or mismatch was calculated using Wilson’s equation [31][33]: The dislocation density (δ) gives more information about the number of defects in the films; it was calculated from the relation [32]: where D is the average crystallite size. The interplanar spacing (d
  • significantly relative to as-deposited Mo films of the same nominal thickness, as illustrated in Table 1. Nitrogen ions during implantation induced many lattice defects, including point defects, dislocations, and distortions, in the Mo crystal lattice, resulting in microstructural disorder and amorphization
PDF
Album
Full Research Paper
Published 01 Apr 2025

Vortex lattices of layered HTSCs at different vortex–vortex interaction potentials

  • Valerii P. Lenkov,
  • Anastasia N. Maksimova,
  • Anna N. Moroz and
  • Vladimir A. Kashurnikov

Beilstein J. Nanotechnol. 2025, 16, 362–370, doi:10.3762/bjnano.16.27

Graphical Abstract
  • ordering of the pancakes, which also enhances the pinning of vortices on defects. In [8], the vortex system in a HgBa2CuO4+δ monocrystal was studied. The measurements were performed in a wide range of temperatures and magnetic fields, and the phase diagram of the vortex system was obtained as a result of
  • artificial pinning centers, or in samples with columnar defects perpendicular to the superconducting planes, the average deviation of pancakes from the axis of the vortex filament due to thermal motion is much less than λ, that is, the London penetration depth of the magnetic field into the superconductor
PDF
Album
Full Research Paper
Published 13 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • resistivity of the films depends on the structure, grain boundary defects, and surface morphology of the films. These properties can be altered by varying the deposition method as well as the deposition parameters. In literature, there are several reports of zinc telluride films deposited using various
  • with energy lower than the excitation photon energy are emitted. The recombination can occur either from band to band or through impurities and defects present within an energy level inside the forbidden gap. Grain boundaries are responsible for non-radiative recombination processes. For the present
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • (O)C [45]. These oxygen-rich functional groups constitute the formation of various structural defects and attributes to the appearance of a relative high-intensity D band in GO. On the other hand, a blue shift in the position of the G band (1581 cm−1 to 1596 cm−1) was also observed for GO, which
  • could be attributed to increased graphitic amorphization [45]. Finally, the change in the ID/IG ratio for graphite (0.065) and GO (0.929) corresponds to the number of defects relative to the sp2 hybrid honeycombed graphitic domain in each compound, respectively. On the other hand, a decrease in the ID
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • electron microscopy (SEM) and field-emission scanning electron microscopy (FESEM) are more commonly used to analyze the fiber diameter, distribution, and overall surface morphology [144]. Microscopic images obtained from these techniques help to identify defects such as beading or non-uniformity in fibers
PDF
Album
Review
Published 26 Feb 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • and/or transition metals compounds) into ZnO. This alteration introduces surface defects, leading to a decrease in the bandgap. As a result, the materials become more efficient in harvesting energy to produce reactive species, which is beneficial for applications involving contaminant treatment [61
  • light exposure, the rates of TC degradation by pure ZnO, g-C3N4, and defective ZnO/g-C3N4 composite were found to be 35.20%, 71.48%, and 93.47%, respectively. Because of the existence of N defects, the constructed nanocomposite promotes the electron transfer efficiently with lower recombination rates
  • oxide-based materials Graphene is a monolayer of carbon atoms organized in a hexagonal lattice, with various types of defects present around the edges. This material is categorized based on the level of surface oxidation, which includes pristine graphene, graphene oxide, and reduced graphene oxide (rGO
PDF
Album
Review
Published 25 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • the ectopic (acentrosomal) microtubule nucleation was observed, with disassembly of the centrosome and a cytoskeletal reorganization that trigger the generation of ineffective biomechanical forces, which leads to migration defects, and ultimately to spindle-assembly checkpoint blockage and apoptosis
  • dual-functionalized MWCNTs and MWCNTs-G, blank and TMZ-loaded, are presented in Figure 5. When analyzing these spectra, the following features were taken into consideration: the D (“disorder”) band, usually positioned around 1350 cm−1 and related to the degree of structural defects, deteriorations, and
  • because of their significance for identifying the structural defects [60][61][62]. In the Raman spectra of MWCNT–COOH and MWCNTs-G-COOH (Figure 5a and Figure 5c, respectively), the intensity ratios of D and G band (IG/ID) were calculated as 0.59 and 0.65, respectively. The analogous calculation for
PDF
Album
Full Research Paper
Published 19 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • their bandgap energy (incident wavelength from approximately 310 to 1240 nm) [73], leading to the generation of electron–hole pairs that possess energy equivalent to the bandgap [74]. Once these excited electrons are transferred to impurities, defects, or surface dangling bonds [75], they release energy
PDF
Album
Review
Published 17 Feb 2025
Other Beilstein-Institut Open Science Activities