Search results

Search for "development" in Full Text gives 1231 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • effective in overcoming these obstacles, particularly regarding drugs that are designed for the treatment of local gastric diseases [3]. The solution to this is the development of gastroretentive drug delivery systems. These are designed to increase the drug residence time in the upper part of the
  • system. The reason for choosing this peptide as a model drug was that there is ongoing research for the use of peptide-based therapeutics for the treatment of diseases; however, development of oral peptide therapy is quite challenging because of the high acidity in the stomach and the presence of the
  • development of this assay was inspired by a study performed by Sarparanta and colleagues [79]. AGS cells were seeded on separate 12-well plates at two concentrations (6 × 104 and 1.2 × 105 cells/well) to analyze the increase in mucoadhesion with increasing cell concentrations. Next day, the medium was
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • substrate, which ultimately lead to the development of stress and strain within the film. At a substrate temperature of 600 °C, the lattice constant value is the same as in the bulk material. The strain in films occurs due to lattice mismatch between film and bulk. The microstrain in films was calculated
  • accelerator and related characterization facilities at Kurukshetra University. The authors are also thankful to the Ministry of Human Resource and Development (MHRD), New Delhi for RUSA 2.0 grants to the Center for Advanced Material Research (CAMR), Kurukshetra University.
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Graphene oxide–chloroquine conjugate induces DNA damage in A549 lung cancer cells through autophagy modulation

  • Braham Dutt Arya,
  • Sandeep Mittal,
  • Prachi Joshi,
  • Alok Kumar Pandey,
  • Jaime E. Ramirez-Vick,
  • Govind Gupta and
  • Surinder P. Singh

Beilstein J. Nanotechnol. 2025, 16, 316–332, doi:10.3762/bjnano.16.24

Graphical Abstract
  • .16.24 Abstract Autophagy is a highly regulated catabolic process by which unnecessary, dysfunctional, or damaged proteins and other cellular components are degraded and recycled to promote cellular differentiation, survival, and development. In response to endogenous or exogenous stresses, cancer cells
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • materials with novel properties. The development of substances and methods with enhanced water dispersibility and bioavailability from materials such as berberine and curcumin is a current trend. Several studies on the nanofabrication of berberine aimed at improving its bioavailability and evaluating its
  • ranging from 12.5 to 25.0 µg/mL [31]. However, there is limited research on the activity of BerNPs against S. mutans, a primary pathogen responsible for dental caries. This study aims to provide additional information on the potential and applications of BerNPs in the development of oral care products
  • , and ldh, thereby preventing biofilm development [40]. Conclusion In this study, BerNPs were fabricated using ball milling with zirconium balls. Analysis through FE-SEM, UV–vis, XRD, and FTIR revealed that the nanoparticles predominantly exhibited a crystalline structure, with an average size of 40–65
PDF
Album
Full Research Paper
Published 27 Feb 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • directions are proposed to overcome these obstacles and further enhance the mechanical properties of chitosan/PVA electrospun nanofibers, guiding their development for practical applications. Keywords: biomaterials; chitosan; electrospun nanofiber; mechanical properties; polyvinyl alcohol; Introduction In
  • nanocomposites have been produced through the substantial utilization of nanoparticles. The development of fibrous nanocomposites or bio-nanocomposites, where the matrix and/or fillers are biomaterials, has been advanced in recent years by introducing nanoscale materials into electrospun fibers in the form of
PDF
Album
Review
Published 26 Feb 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • continuous presence of antibiotics in natural environments can contribute to the development of antibiotic-resistant bacteria (ARBs) and their resistance genes (ARGs), hastening the spread of antibiotic resistance [9][10]. Several studies have reported that this situation poses significant risks to human
  • enable localized surface plasmonic resonance (LSPR). The second strategy focuses on the development of heterojunctions between two semiconductors that is activated by visible light [65][66]. These heterojunctions should have bandgaps and energy levels that match the valence and conduction bands
  • efficiency in comparison to α-Bi2O3. Nevertheless, the inherent instability of β-Bi2O3 presents a formidable obstacle in the development of uncomplicated techniques for producing pure β-Bi2O3, particularly at the nanoscale. The photocatalytic efficiency of Bi2O3 is inadequate for decomposing antibiotics
PDF
Album
Review
Published 25 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • maintain their viability over time [4]. Consequently, the characteristics of the carrier material used to transport rhizobacteria are critical in determining their survival and successful colonization within both soil and root systems. This, in turn, contributes to the development of biofertilizers as a
  • application and storage [7]. Nanomaterials have gained significant attention in the development of rhizobacterial carrier materials, as their effective utilization can provide protective benefits to plants, assist in nutrient absorption, and, when in gel form, significantly improve water management efficiency
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • treatment technologies. This underscores an urgent need for more advanced therapeutic approaches to effectively halt or even reverse the progression of eye diseases. The rapid advancement of nanotechnology offers promising pathways for the development of novel ophthalmic therapies. Notably, photothermal
  • treatments pose significant barriers [5]. The evolution of nanotechnology has catalyzed the development of novel therapeutic technologies, with a plethora of nanomaterials exhibiting significant potential for nanotherapeutic applications [6][7][8]. Among these, photothermal nanomaterials hold promise in
  • photothermal conversion and tunability of light absorption of these materials simplify the therapeutic light source, broadening their applicability [17][18]. Furthermore, the customizable nature of these nanomaterials allows for the development of personalized treatment plans, tailored to individual patient
PDF
Album
Review
Published 17 Feb 2025

Probing the potential of rare earth elements in the development of new anticancer drugs: single molecule studies

  • Josiane A. D. Batista,
  • Rayane M. de Oliveira,
  • Carlos H. M. Lima,
  • Milton L. Lana Júnior,
  • Virgílio C. dos Anjos,
  • Maria J. V. Bell and
  • Márcio S. Rocha

Beilstein J. Nanotechnol. 2025, 16, 187–194, doi:10.3762/bjnano.16.15

Graphical Abstract
  • , Minas Gerais, Brazil Departamento de Ciências Naturais, Universidade Federal do Acre, Rio Branco, Acre, Brazil 10.3762/bjnano.16.15 Abstract We use optical tweezers and atomic force microscopy to investigate the potential of rare earth elements to be used as anticancer agents in the development of new
  • what occurs with classical DNA condensing agents such as polycations and depletants. Keywords: DNA; optical tweezers; rare earth elements; single molecule force spectroscopy; Introduction The development of new drugs to treat human diseases is a field of singular importance that usually involves
  • side effects related to these therapies. Actually, both aspects depend on the development of new drugs and/or drug carriers that can improve the selectivity of these anticancer agents to reach their specific targets inside tumor cells [3][4][5]. Although commonly used in a number of technological
PDF
Album
Full Research Paper
Published 14 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • membranes. To address this challenge, the development of mixed matrix membranes (MMMs) is a promising strategy. MMMs are obtained by carefully integrating porous nano-fillers into polymeric matrices, enabling the simultaneous enhancement of selectivity and permeability. In particular, metal-organic
  • opportunities encountered in the development and fabrication of MOF-based MMMs for CO2 capture. An account of current trends in the field is given, while gaps and further areas of investigation are identified and highlighted. Specifically, the review intends to convey a broad yet comprehensive understanding of
  • of their outstanding gas adsorption capabilities [30][45]. The topic of MOF-based gas separation and CO2 capture has been extensively addressed in comprehensive reviews [26][46][47][48][49]. A succinct account of MOF development for CO2 capture is proposed in the next paragraphs to better understand
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity

  • Silvia Jaerger,
  • Patricia Appelt,
  • Mario Antônio Alves da Cunha,
  • Fabián Ccahuana Ayma,
  • Ricardo Schneider,
  • Carla Bittencourt and
  • Fauze Jacó Anaissi

Beilstein J. Nanotechnol. 2025, 16, 141–154, doi:10.3762/bjnano.16.13

Graphical Abstract
  • purifying water contaminated with dyes necessitating the development of cost-effective technologies for their removal from industrial effluents. Adsorption emerges as a widely used method for pollutant removal from wastewater due to its design simplicity, operational ease, and relatively straightforward
  • ) demonstrate significant antibacterial activity against the Gram-negative bacteria Proteus mirabilis, highlighting the influence of the dye in the assay outcomes. The implications of this work extend to the development of a novel hybrid pigment. This pigment, synthesized from abundant natural clays of the
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2025

TiO2 immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites

  • Marina G. Shelyapina,
  • Rosario Isidro Yocupicio-Gaxiola,
  • Gleb A. Valkovsky and
  • Vitalii Petranovskii

Beilstein J. Nanotechnol. 2025, 16, 128–140, doi:10.3762/bjnano.16.12

Graphical Abstract
  • SiO2 opens up a wide range of opportunities for the development of new materials for specific applications. Experimental The synthesis of nanocomposites was carried out similarly to the method first proposed in [49] and used previously in [5][50] for the insertion of SiO2 nanopillars. The latter
PDF
Album
Full Research Paper
Published 10 Feb 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • their applicability to practical device development. Conclusion Solar energy is one of the most promising renewable energy sources. It is one of those energy sources creating no harmful emissions. PSCs are a new generation in the photovoltaic industry. Here, a La2NiMnO6 (LNMO)-based DPSC is simulated
PDF
Album
Full Research Paper
Published 06 Feb 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • .16.10 Abstract In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential
  • nanomedicine landscape, the design and development of nanocarriers (NCs) for precise drug delivery are a pivotal innovation. NCs address significant pharmacological challenges, such as enhancing drug solubility, ensuring specific distribution, and facilitating the crossing of biological barriers [1]. Tailoring
  • Hepatocellular carcinoma (HCC): HCC is the most common type of primary liver cancer and represents a significant global health burden [96]. The development of HCC is a complex, multistep process that involves genetic mutations, epigenetic alterations, and changes in the liver microenvironment. The prognosis for
PDF
Album
Review
Published 31 Jan 2025

Modeling and simulation of carbon-nanocomposite-based gas sensors

  • Roopa Hegde,
  • Punya Prabha V,
  • Shipra Upadhyay and
  • Krishna S B

Beilstein J. Nanotechnol. 2025, 16, 90–96, doi:10.3762/bjnano.16.9

Graphical Abstract
  • development of these sensors, it becomes imperative to establish a mathematical model for economically predicting their behavior. The simulation using COMSOL Multiphysics is performed to obtain the surface coverage of the sensor by introducing carbon monoxide gas through a Gaussian pulse feed inlet at
  • disciplines, leading to the development of materials with unprecedented properties. Among these materials, carbon nanocomposites have gathered significant attention because of their exceptional electrical, mechanical, and thermal characteristics. These nanocomposites typically consist of carbon-based
  • nanomaterials, such as carbon nanotubes (CNTs), graphene, and carbon black, embedded within a polymer matrix [1]. The distinctive properties of carbon nanocomposites have positioned them as promising candidates for various applications, particularly in the development of advanced sensors. The small amounts of
PDF
Album
Full Research Paper
Published 30 Jan 2025

Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258

  • Prashantkumar Siddappa Chakra,
  • Aishwarya Banakar,
  • Shriram Narayan Puranik,
  • Vishwas Kaveeshwar,
  • C. R. Ravikumar and
  • Devaraja Gayathri

Beilstein J. Nanotechnol. 2025, 16, 78–89, doi:10.3762/bjnano.16.8

Graphical Abstract
  • applications. Keywords: anticancer; green synthesis; lactic acid bacteria; nanoparticles; zinc oxide; Introduction Nanotechnology has revolutionized various fields through its remarkable development and the unique properties exhibited by nanoparticles (NPs) at the mesoscopic level. Dimension, form, surface
  • 0.1 M ZnSO4·7H2O was added, and the flask was heated to 80 °C for 10 min. The continuous process of transformation could be confirmed by the development of white precipitate at the bottom of the flask. After that, the flask was incubated for a further 12 h at 37 °C to ensure complete particle
PDF
Album
Full Research Paper
Published 30 Jan 2025

Instance maps as an organising concept for complex experimental workflows as demonstrated for (nano)material safety research

  • Benjamin Punz,
  • Maja Brajnik,
  • Joh Dokler,
  • Jaleesia D. Amos,
  • Litty Johnson,
  • Katie Reilly,
  • Anastasios G. Papadiamantis,
  • Amaia Green Etxabe,
  • Lee Walker,
  • Diego S. T. Martinez,
  • Steffi Friedrichs,
  • Klaus M. Weltring,
  • Nazende Günday-Türeli,
  • Claus Svendsen,
  • Christine Ogilvie Hendren,
  • Mark R. Wiesner,
  • Martin Himly,
  • Iseult Lynch and
  • Thomas E. Exner

Beilstein J. Nanotechnol. 2025, 16, 57–77, doi:10.3762/bjnano.16.7

Graphical Abstract
  • immunotoxicity assessment using cell lines and primary cellular models, to (v) the use of the instance map approach for the coordination of materials and data flows in complex multipartner collaborative projects and for the demonstration of case studies. Finally, areas for future development of the instance map
  • is sufficient as metadata about a nanomaterial’s toxicity study to enable reuse of the resulting data. Notably these standard tests, as developed by the Organisation for Economic Cooperation and Development (OECD) are usually quite broad, as they are globally agreed upon. Thus, they allow users some
  • chemicals are currently being revised for the use with nanomaterials [26]. Development of the instance map concept The complexity and transformability of nanomaterials also has consequences for the databases used to organise and store nanomaterial characterisation and (eco)toxicity data. Databases needed to
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2025

Advanced atomic force microscopy techniques V

  • Philipp Rahe,
  • Ilko Bald,
  • Nadine Hauptmann,
  • Regina Hoffmann-Vogel,
  • Harry Mönig and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 54–56, doi:10.3762/bjnano.16.6

Graphical Abstract
  • cantilever eigenmode, which is particularly relevant when generating the time-periodic potential by optical or electrical pumping. With this development, the authors could present the detection of modulated components that are below the detection limit of other KPFM measurement modes. Da Lisca et al
PDF
Editorial
Published 21 Jan 2025

Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster

  • Joel Antúnez-García,
  • Roberto Núñez-González,
  • Vitalii Petranovskii,
  • H’Linh Hmok,
  • Armando Reyes-Serrato,
  • Fabian N. Murrieta-Rico,
  • Mufei Xiao and
  • Jonathan Zamora

Beilstein J. Nanotechnol. 2025, 16, 44–53, doi:10.3762/bjnano.16.5

Graphical Abstract
  • development of nanotechnology and the emergence of composite zeolite materials have opened up unprecedented opportunities for their application in nanomedicine [47]. The unique properties of magnetic nanoparticles allow them to be used for targeted drug delivery and visualization of internal organs [48
  • cluster using DFT calculations and compares them to those in the case where the cluster is embedded within the NaA zeolite. Our work aims to provide insights into the structural and electronic properties of these systems, paving the way for future experimental investigations and the development of novel
PDF
Album
Full Research Paper
Published 17 Jan 2025

A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery

  • Elina E. Mansurova,
  • Andrey A. Maslennikov,
  • Anna P. Lyubina,
  • Alexandra D. Voloshina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Anzhela A. Mikhailova,
  • Polina V. Mikshina,
  • Albina Y. Ziganshina and
  • Igor S. Antipin

Beilstein J. Nanotechnol. 2025, 16, 11–24, doi:10.3762/bjnano.16.2

Graphical Abstract
  • of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of
  • diverse receptors and sensors, notably for ACh [23][24][25][26][27]. Here, we report the development of a new nanocarrier that can both carry Atr and act as a synthetic esterase to degrade excess ACh. The nanocarrier was synthesized via microemulsion polycondensation of phenylboronic acid with
  • . Results and Discussion Synthesis of the nanocarrier p(Hist-CA) For the development of the Atr nanocarrier, two resorcinarenes were selected, namely, one with carboxylate groups (CA-RA, Scheme 1) and the other with hydroxy and imidazole groups (Hist-RA, Scheme 1). CA-RA was obtained according to [29]. Hist
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • limitations of current endosomal escape strategies, innovative approaches are urgently needed. Unraveling the mechanisms underpinning endosomal escape is pivotal for the development of novel, safe, and effective agents capable of overcoming these formidable barriers. Recent studies have highlighted the
  • escape efficacy of SO with Aurein 1.2 (AUR), a well-established endosomal escape peptide known for its efficacy both in vitro and in vivo, serving as a positive control [12]. Our findings have the potential to significantly advance the development of safer and more effective liposomal drug delivery
  • residues in endosomal environments. This protonation significantly enhances peptide–membrane interactions, suggesting a pathway for designing safer, more effective endosomal escape peptides. These insights not only expand our understanding of endosomal escape but also open avenues for the development of
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Attempts to preserve and visualize protein corona on the surface of biological nanoparticles in blood serum using photomodification

  • Julia E. Poletaeva,
  • Anastasiya V. Tupitsyna,
  • Alina E. Grigor’eva,
  • Ilya S. Dovydenko and
  • Elena I. Ryabchikova

Beilstein J. Nanotechnol. 2024, 15, 1654–1666, doi:10.3762/bjnano.15.130

Graphical Abstract
  • photomodified samples. Apparently, a number of bio-NPs have surface properties that prevent PACL from binding to them. Given the huge variety of bio-NPs with different surface structures, this fact is not surprising, but it deserves attention. In further development of the photomodification method, it will
PDF
Album
Full Research Paper
Published 30 Dec 2024

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • ; chemical reactions; flow dynamics; HFCVD; hot filament chemical vapor deposition; SiOx films; Introduction The growth of materials such as non-stoichiometric silicon oxide (SiOx) is an important step in semiconductor devices development. Control of deposition parameters determines the success of the
PDF
Album
Full Research Paper
Published 17 Dec 2024

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • therapeutical characteristics as demonstrated in Figure 1-1. In the field of drug delivery, properties such as size, surface-to-volume ratio, and biocompatibility have driven the development of nanoscale-based devices [6][7][8][9]. Nanocompounds offer a strategic approach to addressing or at least improving the
  • , leukocytes, stem cells, tumor components) or other biocomponents (e.g., platelets), can enhance the functionality of carriers and meet the requirements for human applications [19]. The cellular membranes of cancer cells exhibit adhesion molecules crucial to cancer development and metastasis. Heterotypic or
PDF
Album
Perspective
Published 16 Dec 2024

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • diverse plant organs, such as seeds, fruits, flowers, and leaves, and are involved in the defence of the plant against herbivore animals, fungi, and viruses [112][113]. Phenolic compounds are very abundant substances in seeds, playing an important role in their development and maturation. They are
PDF
Album
Review
Published 13 Dec 2024
Other Beilstein-Institut Open Science Activities