Search results

Search for "doping" in Full Text gives 404 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • 23 keV co-implanted (H+ and N+ ions) ZnO films. But in these two above-quoted reports nitrogen ions were used for implantation. Nitrogen ions act as n-type doping and can alter the stoichiometry of ZnO films, which is not desirable in certain optoelectronic devices [10][11]. Hence, we have used Ar
PDF
Album
Full Research Paper
Published 11 Jun 2025

Synchrotron X-ray photoelectron spectroscopy study of sodium adsorption on vertically arranged MoS2 layers coated with pyrolytic carbon

  • Alexander V. Okotrub,
  • Anastasiya D. Fedorenko,
  • Anna A. Makarova,
  • Veronica S. Sulyaeva,
  • Yuliya V. Fedoseeva and
  • Lyubov G. Bulusheva

Beilstein J. Nanotechnol. 2025, 16, 847–859, doi:10.3762/bjnano.16.64

Graphical Abstract
  • -MoS2 are retained, but their positions shift toward higher energies as compared to the spectra of the initial samples. The shift value of the Mo 3d and S 2p components of 2H-MoS2 increases with the deposited sodium concentration because of increased charge doping. The intensity of Mo 3d and S 2p
  • between the MoS2 layers leads to a 2H–1T′ transition and electron charge doping from sodium. The Na/Mo ratio decreases after annealing of the sodiated MoS2 film because of the partial removal of sodium, primarily from the film surface. After annealing, the sodiated MoS2 film still contains a high
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • modification, doping strategies, and material synthesis have been shown to effectively tune the phase transition characteristics, such as the temperature, coercivity (Hc), magnetization, and Curie or Néel temperatures [7][8][9]. For instance Zhou et al. [10] reported that adjusting the composition of NiMnGa to
  • (which partly substitutes Mn atoms) and Ge or Al (which partially replaces Si atoms) [24] (forming CCAs), it effectively lowers the structural and magnetic phase transition temperatures while maintaining the overall magnetization. Previous studies on bulk MnFeNiGeSi [25] (i.e., doping MnNiSi with Fe and
  • Ge) and MnFeNiSiAl [24] (i.e., doping NiMnSi with Fe and Al) alloys, synthesized by arc melting of pure elements show a second-order magnetostructural phase transition between 170 and 220 K with an isothermal entropy change of −7.3 J·kg−1·K−1 at 2.5 T and a first-order magnetostructural phase
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • another study, the optoelectronic properties of FeS2 films in the visible light spectral region were made by doping and undoping Zn onto electrodeposited pyrite films. The Zn-doped samples exhibited a 9.2-fold increase in responsivity. The best Zn-doped condition showed a responsivity and detectivity of
  • 0.206 A·W–1 and 3.3 × 109 Jones, respectively, while a detectivity of 1.98 × 109 Jones was reported for undoped samples, which are analogous to the values obatined in present study. This results also suggests a future possibility of doping the films prepared using laser ablated nanocolloids for refining
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

Thickness dependent oxidation in CrCl3: a scanning X-ray photoemission and Kelvin probe microscopies study

  • Shafaq Kazim,
  • Rahul Parmar,
  • Maryam Azizinia,
  • Matteo Amati,
  • Muhammad Rauf,
  • Andrea Di Cicco,
  • Seyed Javid Rezvani,
  • Dario Mastrippolito,
  • Luca Ottaviano,
  • Tomasz Klimczuk,
  • Luca Gregoratti and
  • Roberto Gunnella

Beilstein J. Nanotechnol. 2025, 16, 749–761, doi:10.3762/bjnano.16.58

Graphical Abstract
  • . employed Monte Carlo methods to observe ferromagnetic behavior in monolayers below 66 K and proposed that hole doping could further enhance the Curie temperature [21]. Similarly, another Monte Carlo study found that the transition temperature for monolayer CrCl3 is 49 K, proposing that the Curie
  • electronic properties of a material. Neal et al. [34] reported the effect of chemisorption of oxygen as a kind of p-type doping, which shows consistency with our results. We expect the surface potential to show the same behavior depending on the chemical composition found by spatially resolved photoemission
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • footprint allows for the combination of different materials with dislocation-free interfaces and to form axial or radial heterostructures of varying material, doping, or crystal phase [17][18][19]. Nanowire heterostructures based on III–V semiconductors are especially promising for electronic
PDF
Album
Review
Published 23 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • devices are the small molecule 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD) and the polymer poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). In this work, we investigate the impact of hole transport layer doping on the performance and potential distribution
  • ; hole transport layer doping; Kelvin probe force microscopy; perovskite solar cells; Introduction Perovskite solar cells (PSCs) are a promising class of photovoltaic material that exhibits high power conversion efficiencies and relies on a low-cost solution-processed fabrication method [1][2][3][4]. At
  • adjacent perovskite. There have been many studies trying to address these points and advance PSC performance through HTL optimization, with conventional approaches mainly focusing on the doping strategies applied to these two materials [26][27][28][29]. The organic semiconductors spiro-OMeTAD and PTAA are
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • antioxidant properties at lower concentrations, TA can act as a prooxidant at higher concentrations. Under these conditions, it binds to metal ions, potentially increasing oxidation and causing damage to biomolecules, especially DNA [17]. Doping GBMs with bioactive molecules like TA represents a potentially
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • of 1.5–4.0 Ωcm, and with p-type doping with B atoms. These wafers were thermally oxidized with 300 nm SiO2. A compact coating unit 010/LV with the sputter head SP010 was used to sputter 14 nm of Pt on top of the wafer. The microcapacitors were then milled out of the surface using a FEI Nova600
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • conductivity of molybdenum thin films by introducing defects, modifying the crystal structure, doping the material with nitrogen ions, and potentially improving surface characteristics. Correlation of structural, optical, and electrical parameters with thickness Figure 12 depicts the mutual correlations
PDF
Album
Full Research Paper
Published 01 Apr 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • activity, and semiconductor properties. By doping ZnO nanoparticles with transition metals, we can alter their electrical, optical, and magnetic properties by introducing new electronic states into the band structure. Herein, Ag is added to ZnO nanostructures to improve their optical properties to detect
  • sensitivity toward lead. The lead chemical sensor that was developed had a detection limit of 3 ppm with a sensitivity of 16 µA·ppm−1·cm−2. The recorded reaction time of lead sensor was less than two seconds. Keywords: electrochemical methods; chemical sensor; doping; lead; nanoparticles; ZnO nanorods
  • particularly well-suited for ZnO doping because of its notable characteristics, including strong conductivity, solubility, favorable ionic size, and low orbital energy. These features contribute to the improvement of optical and electrical characteristics of ZnO. The incorporation of silver boosts the mobility
PDF
Album
Full Research Paper
Published 26 Mar 2025

Vortex lattices of layered HTSCs at different vortex–vortex interaction potentials

  • Valerii P. Lenkov,
  • Anastasia N. Maksimova,
  • Anna N. Moroz and
  • Vladimir A. Kashurnikov

Beilstein J. Nanotechnol. 2025, 16, 362–370, doi:10.3762/bjnano.16.27

Graphical Abstract
  • superconductors can be represented as a stack of pancakes, that is, flat vortices located in the CuO planes and connected by Josephson interaction through interplanar gaps. The vortex structure in layered HTSCs is still a subject of research. In [7], it was shown that Pb doping increases the two-dimensional
PDF
Album
Full Research Paper
Published 13 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • . Rakhshani et al. [16] reported the impact of substrate temperature (35 and 305 °C), thermal annealing, and nitrogen doping on optoelectronic properties of ZnTe films and established an optimal doping concentration of nitrogen for lowering the resistivity of the grown films. Further, there are reports [17
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • CB of the material [58][59]. This action serves to reduce the bandgap, which in turn extends the absorption wavelength edge towards the region of visible light [60][61]. The idea of modifying semiconductor materials in the second generation involves the process of co-doping with both metal and
  • under visible light. When using TiO2 in a full-scale field deployment, reducing the amount and utilizing solar energy can be extremely cost-effective and beneficial to wastewater treatment. Researchers have improved the photocatalytic activity of bulk TiO2 through various modifications, including doping
  • endeavors have been undertaken, including the creation of heterojunctions or the introduction of metal doping. Wang et al. [84] synthesized BiOCl/Mt photocatalysts in which montmorillonite (Mt), which is naturally rich in iron, was combined with bismuth nitrate. According to the authors, the composite
PDF
Album
Review
Published 25 Feb 2025

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • ], and/or carbon shells on the nanoparticle surface [7]. These carbon shells are either amorphous or graphitic [7][8][30], while doping of the shells [31] is also possible. Besides carbon formation, the choice of organic solvent influences the properties of the generated nanoparticles and process
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • bandgap width of TiO2 (≈3.3 eV) is relatively large; thus, absorption of visible light is very weak. Through non-metallic doping, some localized states can be generated above the O 2p orbitals, and the valence band of TiO2 can be reconstructed, resulting in an upward shift of the valence band and a
  • and loading of photothermal nanomaterials is warranted to address more ophthalmic conditions. Modifying these materials with specific targeting molecules could extend their therapeutic applications to various eye tissues. Surface doping with metabolism-related ions could enable precise control over
PDF
Album
Review
Published 17 Feb 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • -circuit current density (JSC) of 13.26 mA/cm2, and a fill factor (FF) of 66%. The PCE is close to that of the Pt-based counter electrode (PCE = 6.86%). Akman [3] used hydrothermal methods to synthesize the photoanodes with different doping sources to further improve the stability of DSSCs. For 1.0 mol
  • % Mn doping and an Eu compact layer, an efficiency of 4.20% was obtained. Currently, perovskite solar cells (PSCs) are attracting the attention of research communities worldwide because of their outstanding and unique properties. PSCs possess desirable characteristics such as cost-effectiveness
  • optimized PSC device displays a higher efficiency of 27.84% with Cu2O and 27.38% with PEDOT:PSS for the planar n-i-p FTO/WS2/LNMO/HTL/Au device structure. However, highly efficient organic HTLs have a few disadvantages over inorganic HTLs, including multistep synthesis requiring additional doping, leading
PDF
Album
Full Research Paper
Published 06 Feb 2025

Advanced atomic force microscopy techniques V

  • Philipp Rahe,
  • Ilko Bald,
  • Nadine Hauptmann,
  • Regina Hoffmann-Vogel,
  • Harry Mönig and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 54–56, doi:10.3762/bjnano.16.6

Graphical Abstract
  • doping of the graphene nanoribbons is reflected by the local work function. They also measure and calculate the local work function as a function of tip–sample distance and compare results to those of simple electrostatic models of a graphene nanoribbon, validating the overall approach of measurement and
PDF
Editorial
Published 21 Jan 2025

Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study

  • Kamal Kumar,
  • Nora H. de Leeuw,
  • Jost Adam and
  • Abhishek Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 1440–1452, doi:10.3762/bjnano.15.116

Graphical Abstract
  • engineering can be achieved through different techniques like (i) doping, where the introduction of dopants or impurities modifies the EBS [21], (ii) strain engineering by inserting mechanical strain to alter the electronic properties [22][23], and (iii) defect engineering [24]. Among these techniques, strain
  • energies of hydrogen molecules over Zr-, Y-, and Ti-decorated ψ-graphene are found to lie within the standard range of −0.2 to −0.7 eV specified by the Department of Energy (DoE) [42][44][45]. However, bandgap engineering, for example, passivation, doping, or strain engineering, is crucial to modify and
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • ordering can also be established in ZnO lattices upon doping with transition-metal and/or rare-earth elements (known as magnetic semiconductors, DMSs). This is expected to enable the development of next-generation spintronic devices [14] applicable to quantum and neuromorphic computing for artificial
PDF
Album
Full Research Paper
Published 11 Nov 2024

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • semiconductor with many versatile and attractive applications in optical, optoelectronic, and photocatalytic fields [35][36][37]. The doping of ZnO with Mn can lead to the development of multifunctional nanostructures, such as room-temperature ferromagnetic materials with potential applications in spintronics
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • only for the visual assessment of the shape and dimensions of a structure, but also for the observation of movement and deflection of an opMEMS. At the same time, the ion beam allows for local doping of the substrate and anisotropic milling. The NanoLab 600i also provides three gas injection systems
PDF
Album
Full Research Paper
Published 23 Oct 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • photocatalytic efficiency. For years, doping of metal nanoparticles (NPs) into a semiconductor matrix has been extensively studied to enhance photocatalytic CH4 oxidation performance. Metal NPs in, for example, Au/TiO2, Au@Pd/ZnO, and Pt@Cu/TiO2 composites act as electron scavenger centers and own more free
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • density functional theory calculations, which verify that the maps reflect the doping of the nanoribbons. Our results help to understand the relation between atomic structure and electronic properties both in high-resolution images and in the distance dependence of the LCPD. Keywords: graphene
  • with respect to the Dirac point, the center of the Dirac cones [2]. The location of the Fermi level is a measure of the work function with respect to a different energy reference, the vacuum energy. This position can be tuned by gating [3] or by doping, for example, n-doping for graphene on SiC [4][5
  • ] and p-doping by Bi, Sb, and Au substrates [2]. Confining graphene to nanostructures [6][7], for example, to graphene nanoribbons (GNRs), that is, few nanometers wide stripes of graphene, opens additional possibilities of tuning the electronic properties by creating quantum-confined states [8] and
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • quantum confinement as reported by Bolker and co-workers [77]. Authors reported that the bandgap of NDs is strongly correlated to the NDs’ size, and it increases with decreasing crystallite size. However, the ND properties can be altered by heteroatomic doping and through the introduction of surface
  • bactericidal effects. The authors also proved the cytocompatibility of the bactericidal coatings. GO showed similar results on titanium surfaces as reported by Yang et al. [115], reporting antibacterial activity of over 99% against both E. coli or S. aureus when a small doping with copper was applied. The
PDF
Album
Review
Published 16 Aug 2024
Other Beilstein-Institut Open Science Activities