Search results

Search for "antimicrobial activity" in Full Text gives 56 result(s) in Beilstein Journal of Nanotechnology.

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • properties [27] and good antibacterial activity [44]. Hydrogels of other amino acids modified by Fmoc, such as Fmoc-tryptophan, Fmoc-methionine, and Fmoc-tyrosine have also been shown to have antimicrobial activity and to be selectively resistant to Gram-positive bacteria [45]. The combined self-assembly
  • bacteria and aztreonam-encapsulated Fomc-F hydrogels antagonize Pseudomonas aeruginosa and enhance Fomc-F antimicrobial activity. Salicylic acid is loaded in Fmoc-ʟ-phenylalanine hydrogel, which can play a role against Gram-positive bacteria, and the drug release behavior changes at different temperature
PDF
Album
Review
Published 12 Oct 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • osteoblast cytotoxicity tests in cell lines (L02 and L929). Adapted from [116], J. I. González Ocampo et al., “Evaluation of cytotoxicity and antimicrobial activity of an injectable bone substitute of carrageenan and nano hydroxyapatite”, J. Biomed. Mater. Res. A., with permission from John Wiley and Sons
PDF
Album
Review
Published 18 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • %, respectively [207]. Liao et al. fabricated epidermal growth factor-coated lysozyme MBs responsive to US waves, which showed good antimicrobial activity, promoting neovascularization and significantly reducing the time needed for wound healing
PDF
Album
Review
Published 11 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • matrix and additive was tested through coating the Ag-NPs with dodecanethiol, a non-polar surfactant. The resulting composites were characterized by scanning electron microscopy and in terms of surface antimicrobial activity. The results demonstrate that the Ag-NPs synthesized in this work are indeed
  • antimicrobial, and that it is possible to imbue a polymeric matrix with the antimicrobial properties of Ag-NPs. Keywords: antimicrobial activity; DIO coating; halloysite; nanocomposites; silver nanoparticles; Introduction The number of people dying from bacterial infections has been significantly reduced with
  • then evaluated in terms of surface antimicrobial activity. Experimental Halloysite (>99%), silver nitrate (AgNO3(s), >99%), and dodecanethiol were obtained from Sigma-Aldrich; sodium hydroxide (NaOH(s), >99%) was purchased from Alpha Quimica; low-density polyethylene (LDPE) was purchased from Braskem
PDF
Album
Full Research Paper
Published 05 Aug 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • characteristics including antimicrobial activity, electrical conductivity, thermal conductivity, optical characteristics, and mechanical properties. The antimicrobial characteristic of silver nanoparticles (AgNPs) has made them highly applicable in the biomedical and therapeutic fields [69][70][71]. Currently
PDF
Album
Review
Published 25 Jan 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • Nanotechnology (CEDENNA), 9170124 Santiago, Chile Department of Physics, University of Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile 10.3762/bjnano.11.129 Abstract The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence
  • and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review
  • -based NPs have demonstrated antimicrobial activity over the last years. Several metal and metal oxide NPs, such as silver, copper, zinc oxide, titanium oxide, copper oxide, and nickel oxide NPs, are known to display antimicrobial activity [15][16][17] that depends on their composition, surface
PDF
Album
Review
Published 25 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • . The local photothermal effect triggered by the NIR irradiation of PVA-GNS films was highly efficient in eliminating E. coli bacteria, as shown in Figure 4. In a very recent study, the antimicrobial activity of a chitosan-based hydrogel with embedded gold nanorods under low-power (200 mW) diode laser
  • irradiation was reported [67]. The antibacterial activity was measured on both Gram-positive and Gram-negative strains, including clinically isolated multidrug-resistant pathogens. The authors found that the fabricated nanocomposite showed pronounced antimicrobial activity against tested pathogenic
PDF
Album
Review
Published 31 Jul 2020

Gram-scale synthesis of splat-shaped Ag–TiO2 nanocomposites for enhanced antimicrobial properties

  • Mohammad Jaber,
  • Asim Mushtaq,
  • Kebiao Zhang,
  • Jindan Wu,
  • Dandan Luo,
  • Zihan Yi,
  • M. Zubair Iqbal and
  • Xiangdong Kong

Beilstein J. Nanotechnol. 2020, 11, 1119–1125, doi:10.3762/bjnano.11.96

Graphical Abstract
  • which have significant antimicrobial activity against Gram-positive and Gram-negative bacteria [16][17]. Importantly, Ag and TiO2 NPs have been reported to be less toxic to humans [2][18][19][20]. In comparison to single NPs, the nanocomposites have advantages in terms of multifunctional use
  • solutions, dried and applied on the culture plates. Finally, the plates were incubated at 37 °C for 24 h and the zone of inhibition was measured around the disc to estimate the antimicrobial activity [22]. Results and Discussion The XRD spectra were analyzed to verify the crystal structure and the phase
  • the antibacterial activity. The aim of this study was to improve the antimicrobial activity of the biocompatible TiO2 material by growing the small Ag nanoparticles onto its surface. It is known that the Ag free radicals are used to kill bacteria due to their highly oxidative nature; however, when
PDF
Album
Full Research Paper
Published 29 Jul 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • whole structure. The silver-decorated nanobeads appear to be a promising material with considerable antimicrobial activity and were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. The determined minimum inhibitory (MIC) and minimum biofilm
  • antimicrobial activity. The MIC values for all of the tested bacterial strains are in the range from 0.76 to 1.14 µg/mL. The least susceptible bacterial strain was gram-positive S. aureus, for which the growth was inhibited at the concentration of 1.14 µg/mL. This result is consistent with previous reports on
  • antimicrobial activity of the nanobeads for both strains. One can also notice that for the S. aureus biofilm only small clusters of dead cells, close to the spaces and interruptions in the biofilm, structure are seen. These changes in the structure of the biofilm were not present in the control sample
PDF
Album
Full Research Paper
Published 14 Apr 2020

Correction: Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2020, 11, 547–549, doi:10.3762/bjnano.11.43

Graphical Abstract
  • ., India Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, 211004, U.P., India 10.3762/bjnano.11.43 Keywords: Ag-doped TiO2; antimicrobial activity; sol–gel; The following is a correction to the section “XRD of TiO2 and Ag-doped TiO2”, which contains a new
PDF
Album
Original
Article
Supp Info
Correction
Published 03 Apr 2020

Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549

  • Dmitriy N. Shurpik,
  • Denis A. Sevastyanov,
  • Pavel V. Zelenikhin,
  • Pavel L. Padnya,
  • Vladimir G. Evtugyn,
  • Yuriy N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2020, 11, 421–431, doi:10.3762/bjnano.11.33

Graphical Abstract
  • [2][3][4]. Silver is well known for its antimicrobial activity, and Ag+ ion is usually considered a biologically active substance [5][6][7][8]. However, it is known that the effect of Ag+ on the human body is toxic and can cause diseases such as argyria (irreversible staining of the skin in gray
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • in hard tissue treatments. FTIR data further confirms the presence of phosphate groups and TGA data showed that the CB-Hap NRs possess significant thermal stability. Furthermore, the hemolysis study showed better blood compatibility than conventional, chemically synthesized Hap, and the antimicrobial
  • activity showed better activity against gram-positive S. aureus bacteria. Moreover, the Hap can be incorporated with metal dopants in future experiments to further elevate their biocompatibility towards blood cells and increase their antibacterial efficacy. These enhanced biological properties of biogenic
PDF
Album
Full Research Paper
Published 04 Feb 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • ’ effect, which was first proposed for maganin. Maganin is an amphipathic peptide, composed of 23 residues, which exhibits a broad-spectrum of antimicrobial activity. This model is characterized by a ‘carpet’ formation followed by a perturbation resulting from the interaction of the negatively charged
PDF
Album
Review
Published 09 Jan 2020

Preservation of rutin nanosuspensions without the use of preservatives

  • Pascal L. Stahr and
  • Cornelia M. Keck

Beilstein J. Nanotechnol. 2019, 10, 1902–1913, doi:10.3762/bjnano.10.185

Graphical Abstract
  • lower and slower increase in microbial growth was found for the Plantacare-stabilized formulations (Figure 10 and Table 3). A possible reason for this observation could be the antimicrobial activity of the stabilizer Plantacare, which was already described in previous works by Jurado and co-workers [27
PDF
Album
Full Research Paper
Published 19 Sep 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • bacteria, including resistant E. coli and S. aureus strains, and when compared to commercial TiO2 nanoparticles, CSTiO2 nanospheres exhibited superior performance. In addition, the positive effect of UV irradiation on the antimicrobial activity was demonstrated. Keywords: antimicrobial nanoparticles
  • , structural and thermal properties. In addition, the antimicrobial activity against common and multidrug-resistant bacteria were also studied. Crucial factors, such as the size, surface morphology and crystal structure of the NPs, were found to affect their antibacterial mechanism. Thus, the comparison of the
  • antimicrobial activity of the developed hollow TiO2 nanospheres with commercial TiO2 NPs was also performed. Results and Discussion Material characterization Titanium dioxide nanospheres were successfully obtained following the three-step procedure shown in Figure 1. First, electrosprayed spherical poly
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Enhanced inhibition of influenza virus infection by peptide–noble-metal nanoparticle conjugates

  • Zaid K. Alghrair,
  • David G. Fernig and
  • Bahram Ebrahimi

Beilstein J. Nanotechnol. 2019, 10, 1038–1047, doi:10.3762/bjnano.10.104

Graphical Abstract
  • demonstrate that conjugation of FluPep to gold and silver nanoparticles enhances its antiviral potency; the antimicrobial activity of silver ions may enable the design of even more potent antimicrobial inhibitors, capable of targeting both influenza and bacterial co-infections. Keywords: antiviral peptides
  • more than one FluPep ligand. Anti-influenza activity of FluPep ligand incorporated to silver nanoparticles Control mixed-matrix-passivated silver nanoparticles had no effect on viral infectivity (Figure 7). It is the silver (Ag+) ions that exert antimicrobial activity [33]. Thus, this result indicates
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2019

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • ]. Some authors have reported antimicrobial activity of gold, platinum, and palladium nanoparticles in the size range of 5 to 30 nm against gram-negative and gram-positive bacteria [23][24][25] and distinct adverse biological effects such as genotoxicity, induction of apoptosis and cell cycle arrest of
PDF
Album
Full Research Paper
Published 29 Oct 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
PDF
Album
Review
Published 19 Sep 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • photogenerated electrons on irradiated titania. To enable a efficient deposition of metals on titania, photodeposition was carried out in 50 vol % methanol as a hole scavenger and under anaerobic conditions to avoid electron scavenging by oxygen. To find the key factors of antimicrobial activity, various titania
  • (IIT&EE ZUT collection). The antimicrobial activity of the photocatalysts was tested by using disc diffusion [80]. Culture plates were prepared with 20 mL of two solid media: Sabouraud Glucose Agar SGA (BIOCORP, Poland) for C. albicans and Malt Extract Agar (Merck, Germany) for mould fungi. Sterilized
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach

  • Alicja Mikolajczyk,
  • Natalia Sizochenko,
  • Ewa Mulkiewicz,
  • Anna Malankowska,
  • Michal Nischk,
  • Przemyslaw Jurczak,
  • Seishiro Hirano,
  • Grzegorz Nowaczyk,
  • Adriana Zaleska-Medynska,
  • Jerzy Leszczynski,
  • Agnieszka Gajewicz and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 2171–2180, doi:10.3762/bjnano.8.216

Graphical Abstract
  • (Fe/N-co-doped) TiO2 nanocomposite particles were detectably cytotoxic [22]. More complex nanostructures of TiO2 bilayer nanosheets doped with bismuth tungstate (Bi2WO6) nanoclusters demonstrated enhanced antimicrobial activity towards E. coli: the bacteria population continuously decreased with the
  • Toxicity evaluation Three types of TiO2-based NPs were synthetized: (1) monometallic (Au, Pd) clusters, (2) core–shell particles and (3) alloy bimetallic clusters (Au/Pd). The cytotoxicity and antimicrobial activity of TiO2 modified with palladium and/or gold NPs is presented in Table 1. Inhibition of
  • summarized in the Table 1, suggest that the antimicrobial activity of the studied nanomaterials varies only insignificantly. Thus, we have chosen the cytotoxicity (EC50) to Chinese hamster ovary (CHO-K1) cells as a target activity for further study. Empirical variables (i.e., average size, BET surface) that
PDF
Album
Full Research Paper
Published 17 Oct 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • by rheometry, fluorescence, circular dichroism (CD), FTIR spectroscopy, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). Given that this tripeptide is capable of forming a hydrogel with mild antimicrobial activity and a lack of cytotoxicity in vitro [26], this new
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

Preparation of alginate–chitosan–cyclodextrin micro- and nanoparticles loaded with anti-tuberculosis compounds

  • Albert Ivancic,
  • Fliur Macaev,
  • Fatma Aksakal,
  • Veaceslav Boldescu,
  • Serghei Pogrebnoi and
  • Gheorghe Duca

Beilstein J. Nanotechnol. 2016, 7, 1208–1218, doi:10.3762/bjnano.7.112

Graphical Abstract
  • -linked D-glucosamine and N-acetyl-D-glucosamine units. Chitosan is mainly used as carrier for different pharmaceutical compositions and also shows some antimicrobial activity [31][32]. These three saccharides are practically non-toxic, biocompatible and biodegradable. The aim of the paper is to obtain
PDF
Album
Full Research Paper
Published 24 Aug 2016

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by “activating” the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could
  • microorganisms is not yet fully understood, it is generally believed that different mechanisms determine the antimicrobial activity of AgNPs based on both the release of silver ions and the nanoparticle characteristics [15][16]. Some of these proposed mechanisms include: (a) the direct contact between NPs and
  • contrast, only a few investigations have been performed that analyze the bactericidal properties of AgNPs produced by PLAL. In spite of the superior surface cleanliness and the absence of capping agents, which could induce a potential shielding effect on the antimicrobial activity, the obtained MIC values
PDF
Album
Full Research Paper
Published 18 Mar 2016

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

  • Dulce G. Romero-Urbina,
  • Humberto H. Lara,
  • J. Jesús Velázquez-Salazar,
  • M. Josefina Arellano-Jiménez,
  • Eduardo Larios,
  • Anand Srinivasan,
  • Jose L. Lopez-Ribot and
  • Miguel José Yacamán

Beilstein J. Nanotechnol. 2015, 6, 2396–2405, doi:10.3762/bjnano.6.246

Graphical Abstract
  • aureus. Future research should focus on defining the related molecular mechanisms and their importance to the antimicrobial activity of silver nanoparticles. Keywords: electron microscopy; methicillin-resistant Staphylococcus aureus (MRSA); positively charged nanoparticles; silver nanoparticles
  • on defining the molecular details of the key mechanisms and their importance to the antimicrobial activity of AgNPs. We also propose that Ag0/Ag+ makes AgNP solutions even more effective in inactivating bacteria. The positively charged AgNPs not only possess a greater affinity to bind to the
PDF
Album
Full Research Paper
Published 15 Dec 2015

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • concentrations than metallic NPs and they show remarkable antimicrobial activity [55]. In another study, they found that Ag– and Au–DAPHP have potential applications in treatment of angiogenesis accelerated disorders, such as cancer and inflammatory diseases [71]. Cai et al. used the nanoporous structure of
PDF
Album
Review
Published 10 Dec 2015
Other Beilstein-Institut Open Science Activities