Search results

Search for "antimicrobial activity" in Full Text gives 48 result(s) in Beilstein Journal of Nanotechnology.

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • whole structure. The silver-decorated nanobeads appear to be a promising material with considerable antimicrobial activity and were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. The determined minimum inhibitory (MIC) and minimum biofilm
  • antimicrobial activity. The MIC values for all of the tested bacterial strains are in the range from 0.76 to 1.14 µg/mL. The least susceptible bacterial strain was gram-positive S. aureus, for which the growth was inhibited at the concentration of 1.14 µg/mL. This result is consistent with previous reports on
  • antimicrobial activity of the nanobeads for both strains. One can also notice that for the S. aureus biofilm only small clusters of dead cells, close to the spaces and interruptions in the biofilm, structure are seen. These changes in the structure of the biofilm were not present in the control sample
PDF
Album
Full Research Paper
Published 14 Apr 2020

Correction: Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2020, 11, 547–549, doi:10.3762/bjnano.11.43

Graphical Abstract
  • ., India Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, 211004, U.P., India 10.3762/bjnano.11.43 Keywords: Ag-doped TiO2; antimicrobial activity; sol–gel; The following is a correction to the section “XRD of TiO2 and Ag-doped TiO2”, which contains a new
PDF
Album
Original
Article
Supp Info
Correction
Published 03 Apr 2020

Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549

  • Dmitriy N. Shurpik,
  • Denis A. Sevastyanov,
  • Pavel V. Zelenikhin,
  • Pavel L. Padnya,
  • Vladimir G. Evtugyn,
  • Yuriy N. Osin and
  • Ivan I. Stoikov

Beilstein J. Nanotechnol. 2020, 11, 421–431, doi:10.3762/bjnano.11.33

Graphical Abstract
  • [2][3][4]. Silver is well known for its antimicrobial activity, and Ag+ ion is usually considered a biologically active substance [5][6][7][8]. However, it is known that the effect of Ag+ on the human body is toxic and can cause diseases such as argyria (irreversible staining of the skin in gray
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • in hard tissue treatments. FTIR data further confirms the presence of phosphate groups and TGA data showed that the CB-Hap NRs possess significant thermal stability. Furthermore, the hemolysis study showed better blood compatibility than conventional, chemically synthesized Hap, and the antimicrobial
  • activity showed better activity against gram-positive S. aureus bacteria. Moreover, the Hap can be incorporated with metal dopants in future experiments to further elevate their biocompatibility towards blood cells and increase their antibacterial efficacy. These enhanced biological properties of biogenic
PDF
Album
Full Research Paper
Published 04 Feb 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • ’ effect, which was first proposed for maganin. Maganin is an amphipathic peptide, composed of 23 residues, which exhibits a broad-spectrum of antimicrobial activity. This model is characterized by a ‘carpet’ formation followed by a perturbation resulting from the interaction of the negatively charged
PDF
Album
Review
Published 09 Jan 2020

Preservation of rutin nanosuspensions without the use of preservatives

  • Pascal L. Stahr and
  • Cornelia M. Keck

Beilstein J. Nanotechnol. 2019, 10, 1902–1913, doi:10.3762/bjnano.10.185

Graphical Abstract
  • lower and slower increase in microbial growth was found for the Plantacare-stabilized formulations (Figure 10 and Table 3). A possible reason for this observation could be the antimicrobial activity of the stabilizer Plantacare, which was already described in previous works by Jurado and co-workers [27
PDF
Album
Full Research Paper
Published 19 Sep 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • bacteria, including resistant E. coli and S. aureus strains, and when compared to commercial TiO2 nanoparticles, CSTiO2 nanospheres exhibited superior performance. In addition, the positive effect of UV irradiation on the antimicrobial activity was demonstrated. Keywords: antimicrobial nanoparticles
  • , structural and thermal properties. In addition, the antimicrobial activity against common and multidrug-resistant bacteria were also studied. Crucial factors, such as the size, surface morphology and crystal structure of the NPs, were found to affect their antibacterial mechanism. Thus, the comparison of the
  • antimicrobial activity of the developed hollow TiO2 nanospheres with commercial TiO2 NPs was also performed. Results and Discussion Material characterization Titanium dioxide nanospheres were successfully obtained following the three-step procedure shown in Figure 1. First, electrosprayed spherical poly
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Enhanced inhibition of influenza virus infection by peptide–noble-metal nanoparticle conjugates

  • Zaid K. Alghrair,
  • David G. Fernig and
  • Bahram Ebrahimi

Beilstein J. Nanotechnol. 2019, 10, 1038–1047, doi:10.3762/bjnano.10.104

Graphical Abstract
  • demonstrate that conjugation of FluPep to gold and silver nanoparticles enhances its antiviral potency; the antimicrobial activity of silver ions may enable the design of even more potent antimicrobial inhibitors, capable of targeting both influenza and bacterial co-infections. Keywords: antiviral peptides
  • more than one FluPep ligand. Anti-influenza activity of FluPep ligand incorporated to silver nanoparticles Control mixed-matrix-passivated silver nanoparticles had no effect on viral infectivity (Figure 7). It is the silver (Ag+) ions that exert antimicrobial activity [33]. Thus, this result indicates
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2019

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • ]. Some authors have reported antimicrobial activity of gold, platinum, and palladium nanoparticles in the size range of 5 to 30 nm against gram-negative and gram-positive bacteria [23][24][25] and distinct adverse biological effects such as genotoxicity, induction of apoptosis and cell cycle arrest of
PDF
Album
Full Research Paper
Published 29 Oct 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
PDF
Album
Review
Published 19 Sep 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • photogenerated electrons on irradiated titania. To enable a efficient deposition of metals on titania, photodeposition was carried out in 50 vol % methanol as a hole scavenger and under anaerobic conditions to avoid electron scavenging by oxygen. To find the key factors of antimicrobial activity, various titania
  • (IIT&EE ZUT collection). The antimicrobial activity of the photocatalysts was tested by using disc diffusion [80]. Culture plates were prepared with 20 mL of two solid media: Sabouraud Glucose Agar SGA (BIOCORP, Poland) for C. albicans and Malt Extract Agar (Merck, Germany) for mould fungi. Sterilized
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach

  • Alicja Mikolajczyk,
  • Natalia Sizochenko,
  • Ewa Mulkiewicz,
  • Anna Malankowska,
  • Michal Nischk,
  • Przemyslaw Jurczak,
  • Seishiro Hirano,
  • Grzegorz Nowaczyk,
  • Adriana Zaleska-Medynska,
  • Jerzy Leszczynski,
  • Agnieszka Gajewicz and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 2171–2180, doi:10.3762/bjnano.8.216

Graphical Abstract
  • (Fe/N-co-doped) TiO2 nanocomposite particles were detectably cytotoxic [22]. More complex nanostructures of TiO2 bilayer nanosheets doped with bismuth tungstate (Bi2WO6) nanoclusters demonstrated enhanced antimicrobial activity towards E. coli: the bacteria population continuously decreased with the
  • Toxicity evaluation Three types of TiO2-based NPs were synthetized: (1) monometallic (Au, Pd) clusters, (2) core–shell particles and (3) alloy bimetallic clusters (Au/Pd). The cytotoxicity and antimicrobial activity of TiO2 modified with palladium and/or gold NPs is presented in Table 1. Inhibition of
  • summarized in the Table 1, suggest that the antimicrobial activity of the studied nanomaterials varies only insignificantly. Thus, we have chosen the cytotoxicity (EC50) to Chinese hamster ovary (CHO-K1) cells as a target activity for further study. Empirical variables (i.e., average size, BET surface) that
PDF
Album
Full Research Paper
Published 17 Oct 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • by rheometry, fluorescence, circular dichroism (CD), FTIR spectroscopy, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). Given that this tripeptide is capable of forming a hydrogel with mild antimicrobial activity and a lack of cytotoxicity in vitro [26], this new
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

Preparation of alginate–chitosan–cyclodextrin micro- and nanoparticles loaded with anti-tuberculosis compounds

  • Albert Ivancic,
  • Fliur Macaev,
  • Fatma Aksakal,
  • Veaceslav Boldescu,
  • Serghei Pogrebnoi and
  • Gheorghe Duca

Beilstein J. Nanotechnol. 2016, 7, 1208–1218, doi:10.3762/bjnano.7.112

Graphical Abstract
  • -linked D-glucosamine and N-acetyl-D-glucosamine units. Chitosan is mainly used as carrier for different pharmaceutical compositions and also shows some antimicrobial activity [31][32]. These three saccharides are practically non-toxic, biocompatible and biodegradable. The aim of the paper is to obtain
PDF
Album
Full Research Paper
Published 24 Aug 2016

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by “activating” the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could
  • microorganisms is not yet fully understood, it is generally believed that different mechanisms determine the antimicrobial activity of AgNPs based on both the release of silver ions and the nanoparticle characteristics [15][16]. Some of these proposed mechanisms include: (a) the direct contact between NPs and
  • contrast, only a few investigations have been performed that analyze the bactericidal properties of AgNPs produced by PLAL. In spite of the superior surface cleanliness and the absence of capping agents, which could induce a potential shielding effect on the antimicrobial activity, the obtained MIC values
PDF
Album
Full Research Paper
Published 18 Mar 2016

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

  • Dulce G. Romero-Urbina,
  • Humberto H. Lara,
  • J. Jesús Velázquez-Salazar,
  • M. Josefina Arellano-Jiménez,
  • Eduardo Larios,
  • Anand Srinivasan,
  • Jose L. Lopez-Ribot and
  • Miguel José Yacamán

Beilstein J. Nanotechnol. 2015, 6, 2396–2405, doi:10.3762/bjnano.6.246

Graphical Abstract
  • aureus. Future research should focus on defining the related molecular mechanisms and their importance to the antimicrobial activity of silver nanoparticles. Keywords: electron microscopy; methicillin-resistant Staphylococcus aureus (MRSA); positively charged nanoparticles; silver nanoparticles
  • on defining the molecular details of the key mechanisms and their importance to the antimicrobial activity of AgNPs. We also propose that Ag0/Ag+ makes AgNP solutions even more effective in inactivating bacteria. The positively charged AgNPs not only possess a greater affinity to bind to the
PDF
Album
Full Research Paper
Published 15 Dec 2015

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • concentrations than metallic NPs and they show remarkable antimicrobial activity [55]. In another study, they found that Ag– and Au–DAPHP have potential applications in treatment of angiogenesis accelerated disorders, such as cancer and inflammatory diseases [71]. Cai et al. used the nanoporous structure of
PDF
Album
Review
Published 10 Dec 2015

Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

  • Syeda Arooj,
  • Samina Nazir,
  • Akhtar Nadhman,
  • Nafees Ahmad,
  • Bakhtiar Muhammad,
  • Ishaq Ahmad,
  • Kehkashan Mazhar and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2015, 6, 570–582, doi:10.3762/bjnano.6.59

Graphical Abstract
  • with 3% Ag content (size: 12 nm) were toxic to different bacterial strains. Talari et al. [34] reported that increase in Ag content in the ZnO:Ag nanocomposites improved the antimicrobial activity of these particles. The addition of Ag content in ZnO NPs causes a positional shift in XRD pattern
PDF
Album
Full Research Paper
Published 26 Feb 2015

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • Sigma-Aldrich (Germany). The antimicrobial activity was tested against human pathogenic bacteria such as Staphylococcus aureus ATTC 25923, Escherichia coli ATCC 8738, and Enterococcus faecalis ATCC 29212. The bacterial strains were grown in Luria Bertani Agar (LBA) plates at 37 °C with the following
  • ). Antimicrobial activity of samples The antimicrobial investigations were performed on Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus, Enterococcus faecalis) bacteria. Phosphate buffer solution (pH 7.4) was the negative control for all the samples. The liposomes alone (samples V1 and V2
PDF
Album
Full Research Paper
Published 02 Dec 2014

Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

  • Alina Maria Holban,
  • Valentina Grumezescu,
  • Alexandru Mihai Grumezescu,
  • Bogdan Ştefan Vasile,
  • Roxana Truşcă,
  • Rodica Cristescu,
  • Gabriel Socol and
  • Florin Iordache

Beilstein J. Nanotechnol. 2014, 5, 872–880, doi:10.3762/bjnano.5.99

Graphical Abstract
  • biocompatibility with human cells, the newly synthesized nano-active thin coating exhibited a great antimicrobial activity. The surface inhibited both S. aureus and P. aeruginosa attachment and also the formation of non-specific biofilms. MAPLE deposited thin films interfere with biofilm formation both in the
PDF
Album
Full Research Paper
Published 18 Jun 2014

Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2013, 4, 345–351, doi:10.3762/bjnano.4.40

Graphical Abstract
  • and transfer behaviour of the photoexcited electron–hole pairs in the semiconductors was recorded by photoluminescence. The antimicrobial activity of TiO2 and Ag-doped TiO2 nanoparticles (3% and 7%) was investigated against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas
  • zero viability at 40 mg/30 mL culture in the case of P. aeruginosa only. Keywords: Ag-doped TiO2; antimicrobial activity; sol–gel; Introduction The photocatalytic agent TiO2, known for its chemical stability and optical competency, has been used extensively for killing different groups of
  • blocking of respiration and cell death of the bacteria [10]. Another remarkable mechanism of the antimicrobial activity of Ag nanoparticles is related to the formation of free radicals and consequent free-radical-induced oxidative damage of the cell membranes of bacteria [11][12]. But the same result was
PDF
Album
Correction
Full Research Paper
Published 06 Jun 2013

Electrospinning preparation and electrical and biological properties of ferrocene/poly(vinylpyrrolidone) composite nanofibers

  • Ji-Hong Chai and
  • Qing-Sheng Wu

Beilstein J. Nanotechnol. 2013, 4, 189–197, doi:10.3762/bjnano.4.19

Graphical Abstract
  • PVP nanofibers. X-ray diffraction (XRD) results showed that the crystalline structure of Fc in the fibers was amorphous after the electrospinning process. A biological evaluation of the antimicrobial activity of Fc/PVP nanofibers was carried out by using Gram-negative Escherichia coli (E. coli) as
  • agent. In the case of Fc/PVP nanofibers, water-soluble polymer PVP, as a carrier, not only provides good dispersion for Fc, but also can release Fc quickly upon encountering a small amount of water. The antimicrobial activity of composite Fc/PVP nanofibers is explored in this article. Common E.coli was
  • counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. Antimicrobial activity testing of Fc/PVP nanofibers The sample containing 45 wt % Fc was tested for antibacterial activity against the Gram-negative E. coli. Samples were prepared in the form of discs with a diameter of
PDF
Album
Full Research Paper
Published 14 Mar 2013

Paper modified with ZnO nanorods – antimicrobial studies

  • Mayuree Jaisai,
  • Sunandan Baruah and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2012, 3, 684–691, doi:10.3762/bjnano.3.78

Graphical Abstract
  • measure of zones of inhibition (edge of the square inhibition zone in centimeters) around the paper squares of side 1.5 cm for different samples with ZnO nanorods. The antimicrobial activity in the dark is due to the slow release of Zn2+ ions arising from partial dissolution of ZnO in the moist
  • environment leading to the rupture of the bacterial cell wall [23]. S. aureus, being a Gram-positive bacterium, has a thicker cell wall [24], and consequently its immobilization by using the ZnO-coated antimicrobial paper is comparatively lower than that of E. coli. The highest antimicrobial activity was
  • batches, as described in [21]. The samples were dried in a laminar air flow for 10 min prior to conducting antimicrobial tests. The antimicrobial activity was observed considering the zone of inhibition (absence of viable microbial cells) around the paper samples. For the zone-of-inhibition test, 100 µL
PDF
Album
Full Research Paper
Published 11 Oct 2012
Other Beilstein-Institut Open Science Activities