Search results

Search for "cancer treatment" in Full Text gives 65 result(s) in Beilstein Journal of Nanotechnology.

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • with doxorubicin, a cytostatic drug used in chemotherapy for cancer treatment. These particles showed higher efficacy in inhibiting metabolic activity in cell culture in comparison to free doxorubicin [8]. To be used as an artificial oxygen carrier, hemoglobin is isolated from bovine blood. Compared to
PDF
Album
Full Research Paper
Published 24 Jan 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • use in biomedicine, in particular, in magnetic hyperthermia [1][2][3][4], a new promising approach for cancer treatment. In this method, magnetic nanoparticles introduced into a tumor and excited by an alternating (ac) low-frequency magnetic field are able to warm up malignant tissues locally. In most
PDF
Album
Full Research Paper
Published 28 Dec 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • due to different rates of absorption and metabolism, thus, better responses may be achieved [18][39]. Curcumin nanosystems in cancer therapy Nanotechnology can improve the effects of conventional chemotherapeutic agents by reducing multidrug resistance, personalizing cancer treatment, decreasing
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • the glass slide. The use of robots to measure the force between cells may become a means of detecting cancer in its early stage. This research brings new hope for cancer treatment. Kim et al. [23] designed a micro/nanorobot magnetically actuated in three dimensions, which can accurately transport
  • . Chen et al. [39] proposed Z-shaped Au/Pt hybrid self-actuation micro/nanorobot for cancer treatment and targeted drug delivery systems. It is based on self-electrophoretic actuation. The platinum end is designed to be wider than the gold end. Thus, the movement of the micro/nanorobot was directed
PDF
Album
Review
Published 20 Jul 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • , Doha, Qatar 10.3762/bjnano.12.31 Abstract Nanomedicine has emerged as a novel cancer treatment and diagnostic modality, whose design constantly evolves towards increasing the safety and efficacy of the chemotherapeutic and diagnostic protocols. Molecular diagnostics, which create a great amount of
  • efficacy of the cancer treatment. This article will focus on novel design strategies for nanoscale drug delivery systems, based on the unique molecular signatures of myeloid leukemia and EGFR/CD44-positive solid tumors, and the impact of novel discoveries in molecular tumor profiles on future
  • , which usually results in therapy failure and noticeable side effects. Nanomedicine has emerged as a novel cancer treatment and diagnostic modality, whose design constantly evolves towards increasing the safety and efficacy of the chemotherapeutic and diagnostic protocols. Recently, a novel generation of
PDF
Album
Review
Published 29 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • Medical Toxicology Lab, Department of Zoology, Government College University Lahore, Lahore-54000, Pakistan 10.3762/bjnano.12.24 Abstract Two of the limitations associated with cancer treatment are the low efficacy and the high dose-related side effects of anticancer drugs. The purpose of the current
  • , and surgery [3]. Among these, chemotherapy is the most commonly used method as most of the HCC patients are diagnosed at advanced stages and are not good candidates for liver transplantation or surgical resection [4][5]. However, the use of conventional chemotherapeutic agents in cancer treatment is
PDF
Album
Full Research Paper
Published 31 Mar 2021

PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: synthesis, characterization, and in vitro evaluation

  • Shuoye Yang,
  • Zhenwei Wang,
  • Yahong Ping,
  • Yuying Miao,
  • Yongmei Xiao,
  • Lingbo Qu,
  • Lu Zhang,
  • Yuansen Hu and
  • Jinshui Wang

Beilstein J. Nanotechnol. 2020, 11, 1728–1741, doi:10.3762/bjnano.11.155

Graphical Abstract
  • drugs. Keywords: antitumor activity; cellular uptake; PEG functionalization; PEI functionalization; poly(ethylene glycol) (PEG); polyethylenimine (PEI); single-walled carbon nanotubes; Introduction To date, chemotherapy is the most common therapy for cancer treatment. However, the inability of
PDF
Album
Full Research Paper
Published 13 Nov 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • identified. Glutamate-coated γ-Fe2O3 nanoparticles can be used for glutamate delivery to the nervous system or for glutamate adsorption (but with lower effectiveness) in stroke, brain trauma, epilepsy, and cancer treatment following by its subsequent removal using a magnetic field. γ-Fe2O3 nanoparticles with
  • nanoparticle surface before medical application. Autologous biocorona formation is considered to be very promising for advanced nanovesicle technology for cancer treatment [13][37]. Effective magnetic field-mediated glutamate delivery using γ-Fe2O3 nanoparticles can be used for the modulation of extracellular
  • trauma, epilepsy, and cancer treatment. Conclusion This study demonstrated that glutamate biocoating is a temporal dynamic structure at the surface of γ-Fe2O3 nanoparticles. Compounds of the synaptosomal incubation medium that caused a removal of the glutamate biocoating were identified. It was found
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • relaxation time; nanoparticle coating; numerical simulation; stochastic Langevin dynamics method; superparamagnetic nanoparticles; Introduction One of the most important biomedical applications of colloidal magnetic nanoparticle systems is magnetic hyperthermia applied as an alternative for cancer treatment
PDF
Album
Full Research Paper
Published 12 Aug 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
PDF
Album
Review
Published 09 Jan 2020

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
  • can be useful as adjuvant in cancer treatment, after surgical procedure, or in combination with chemotherapy [35][36][37][38][39][40][41]. Despite its broad therapeutic potential, CUR has limited stability to light and pH, as well as poor solubility. CUR is also susceptible to degradation due to the
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields

  • Nikolai A. Usov,
  • Ruslan A. Rytov and
  • Vasiliy A. Bautin

Beilstein J. Nanotechnol. 2019, 10, 2294–2303, doi:10.3762/bjnano.10.221

Graphical Abstract
  • ][3][19][20], certain thermal effects in combination with radiotherapy or chemotherapy can significantly improve the results of cancer treatment. One of the main technological problems of current magnetic hyperthermia development is the optimal choice of sizes and magnetic parameters of nanoparticles
  • and analytical calculations. This topic has recently attracted considerable interest [33][34][35][36][37][38][39][40][41][42][43] in view of the possibility of using magnetic nanoparticles in magnetic hyperthermia for the cancer treatment. Unfortunately, in experiments [41][43] very small SAR values
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2019

Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells

  • Liang Xu,
  • Dekang Xu,
  • Ziying Li,
  • Yu Gao and
  • Haijun Chen

Beilstein J. Nanotechnol. 2019, 10, 1933–1942, doi:10.3762/bjnano.10.189

Graphical Abstract
  • below 100 nm and negative charges will be more suitable for lung cancer treatment. The morphology of the DiP and P2P was observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM, Figure 3C,D). P2P and DiP demonstrated roughly homogeneous rod shapes in TEM but showed spherical
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • nanoparticles (AuNPs) range from molecular imaging, targeted drug delivery, gene therapy, cancer treatment or radio-sensitization and theranostics [1][4][6]. Moreover, AgNPs and AuNPs are among the most investigated engineered nanomaterials for medical use. A search performed in the Web of Science (WoS
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • ) and especially magnetic hyperthermia therapy, which is one of the efficient and new approaches for cancer treatment [4][15]. When magnetic NPs concentrated in tumor tissue are exposed to an ac magnetic field, the electromagnetic energy is converted into thermal energy, and the generated heat is used
PDF
Album
Full Research Paper
Published 03 Jul 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • engineering, and their incorporation in dental devices [25][26][27][28][29][30][31][32]. Another important medical application for nanostructures in general, and for TMDC nanostructures in particular, is targeted cancer treatment through photothermal therapy (PTT). In this method, light-responsive materials
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Heating ability of magnetic nanoparticles with cubic and combined anisotropy

  • Nikolai A. Usov,
  • Mikhail S. Nesmeyanov,
  • Elizaveta M. Gubanova and
  • Natalia B. Epshtein

Beilstein J. Nanotechnol. 2019, 10, 305–314, doi:10.3762/bjnano.10.29

Graphical Abstract
  • ; Introduction Magnetic hyperthermia [1][2][3] is a promising therapeutic method that can be used in combination with chemotherapy or radiotherapy for cancer treatment. Iron oxide nanoparticles are among the materials most popular for application in biomedicine due to their biocompatibility, biodegradability [4
PDF
Album
Full Research Paper
Published 29 Jan 2019

Hybrid Au@alendronate nanoparticles as dual chemo-photothermal agent for combined cancer treatment

  • Anouchka Plan Sangnier,
  • Romain Aufaure,
  • Laurence Motte,
  • Claire Wilhelm,
  • Erwann Guenin and
  • Yoann Lalatonne

Beilstein J. Nanotechnol. 2018, 9, 2947–2952, doi:10.3762/bjnano.9.273

Graphical Abstract
  • , with an IC50 value of 100 µM. Under NIR irradiation a temperature increase was observed leading to a reduction of the IC50 value to 1 µM, with total tumor cell death at 100 µM. Keywords: alendronate; bisphosphonate; cancer treatment; gold nanoparticles; photothermia; Findings Bisphosphonates (BPs
  • resonance leading to strong enhancement of the absorption and scattering when exposed to electromagnetic radiation [21]. Due to this plasmonic absorption, light is converted to heat [22][23][24][25][26]. Photothermal therapy (PTT) is a powerful cancer-treatment technique. Gold NPs have to be activated
PDF
Album
Supp Info
Letter
Published 27 Nov 2018

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • properties of Fe3O4 NPs give rise to novel therapeutic approaches such as magneto-mechanical cancer treatment [4] and magnetic particle hyperthermia (MPH) [5][6][7] as well as to improvements in diagnostic techniques like magnetic resonance imaging (MRI) [8][9][10] and magnetic particle imaging (MPI) [11][12
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • MCF-7 cells [21]. Herein we report the synthesis of calcium phosphate nanoparticles loaded with 5-FU (CaP@5-FU NPs) with the goal of demonstrating enhanced efficacy in lung and colorectal cancer treatment in cell lines. The simple and reproducible reverse micellar microemulsion method was employed for
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate)

  • Sašo Gyergyek,
  • David Pahovnik,
  • Ema Žagar,
  • Alenka Mertelj,
  • Rok Kostanjšek,
  • Miloš Beković,
  • Marko Jagodič,
  • Heinrich Hofmann and
  • Darko Makovec

Beilstein J. Nanotechnol. 2018, 9, 1613–1622, doi:10.3762/bjnano.9.153

Graphical Abstract
  • Powder Technology, Ecole Polytechniquie Fédérale de Lausane, Station 12, 1015 Lausane, Switzerland 10.3762/bjnano.9.153 Abstract Nanocomposites with a high, uniform loading of magnetic nanoparticles are very desirable for applications such as electromagnetic shielding and cancer treatment based on
  • , which makes it an attractive material for cancer treatment using magnetic-field-induced hyperthermia [37]. As expected, the temperature measured at 620 kHz is much higher even at lower applied magnetic field fields than in the case of 98 kHz. Figure 6c shows the comparison of the expected SLP
  • potential for applications in cancer treatment based on magnetically induced hyperthermia. Mixture of ricinoleic-acid-coated iron-oxide nanoparticles with pure PMMA in toluene, NP-RA-PMMA (left container), and a colloidal suspension of the NP-PMMA-2 after polymerization (right container). The silver-grey
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • ]. Generally, biocompatible magnetite (Fe3O4), iron oxide, iron sulfides and maghemite (Fe2O3) are synthesized using magnetotactic bacteria [156][157] that helps in targeted cancer treatment via magnetic hyperthermia, magnetic resonance imaging (MRI), DNA analysis and gene therapy [158]. Moreover, surface
PDF
Album
Review
Published 03 Apr 2018
Other Beilstein-Institut Open Science Activities