Search results

Search for "cell membrane" in Full Text gives 125 result(s) in Beilstein Journal of Nanotechnology.

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
PDF
Album
Review
Published 11 Nov 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • biological functions, including embryogenesis, maintenance of tissue integrity, immune response, and inflammation. Integrins consist of two subunits, α- and β- chains, spanning the cell membrane and forming the receptor in the plasma membrane, characterized by noncovalent interactions [10]. Integrins bind to
PDF
Album
Review
Published 08 Sep 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • ]. Contrarily, nanoparticles composed of a lipid bilayer with cores of different crosslinking extent showed higher uptake of softer particles in MCF-7 cells, which was thought to be due to a melting process of particles with the cell membrane that consumed less energy than endocytosis [8]. Regarding the in vivo
PDF
Album
Full Research Paper
Published 16 Aug 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • bacterial cell membrane and inhibiting the synthesis of proteins and DNA [15]. Chu et al. [16] reported that BBR showed no antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in the range of concentrations from 1 to 64 µg/mL. However, inhibition of MRSA biofilm formation was
  • ratio facilitate interaction and absorption onto the bacterial cell membrane given the benefit of nanoscale size. According to previous studies, BBR can penetrate the phospholipid bilayers and then accumulate in the MRSA cell membrane, in which unsaturated fatty acids are the target of BBR-induced
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • exhibit greater flexibility [26]. The morphological imaging on the micro-/nanoscale of the cell membrane in extracellular environments with different stiffness values is shown in Figure 3c. The leading edge of the PC-3 cell membrane on stiff substrates is prominent, with a more pronounced ridge-like
  • imaging of the cell membrane. We observed that prostate cancer cells exhibit a strong migration ability by sensing changes in the extracellular environment through actin polymerization and filamentous pseudopods. This is because the role of actin polymerisation in cell adhesion structure formation
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • (–NH2), and carboxyl (–COOH) groups [11][12][13][14]. The surface of GNPs can be easily modified with good stability. Thus, they can penetrate the cell membrane and selectively interact with target biomolecules in cells [15][16][17][18]. So far, a variety of functionalized GNPs, whose properties were
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • peroxides and free oxygen radicals increase. Damage to phospholipids, which contain large amounts of unsaturated fatty acids and are sensitive to degradation by hydroxyl radicals, deteriorates the structure of the cell membrane [3]. Antioxidants are compounds that capture and stabilize free radicals and
  • hydroethanolic solution (30% v/v) and ethosomal formulations were not toxic to the cells and can be safely used. It has been stated in many studies that ETHs and other phospholipid-based carrier systems were not cytotoxic due to their similarity to the cell membrane structure. For our active substance EGCG, the
PDF
Album
Full Research Paper
Published 31 May 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • photocatalytic reaction, as a result of which anatase has been found to have the highest antimicrobial activity among all crystal structures of TiO2 [79]. The mechanisms of titania-induced biocidal activity are mostly by an oxidative attack on the outer/inner cell membrane of the microorganism, as well as
PDF
Album
Review
Published 14 Feb 2022

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • possibility for the early diagnosis of cancer [7]. In recent decades, anticancer drugs have been developed in great number, enabling the control and treatment of many cancers to improve life quality and life span of people. Many approved anticancer drugs have significant effects on cell membrane proteins and
  • caused by the more complex distribution of biomolecules, such as proteins and sugars, existing on the normal cell membrane surface than that on the cancer cell surface [28][29][30]. The statistics of the Young's modulus values of the four kinds of cells are illustrated in Figure 4a. The Young’s modulus
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • ). Several studies have indicated that spinel ferrite MFe2O4 (M = Fe, Co, Ni, Zn) NPs cause cytotoxicity via oxidative stress which results in damage to the cell membrane, proteins, and DNA [41][42][43]. However, how NPs are processed inside the cell is also a contributing factor in ROS production [44]. For
PDF
Album
Full Research Paper
Published 02 Dec 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • toxic and considered biologically inert [44][57][58]. Numerous in vitro studies carried out using high-throughput techniques such as microscopic techniques, TEM, and ICP-MS revealed the fate of nanoparticles and their interaction at the interface between the metal surface and cell membrane. Electron
PDF
Album
Review
Published 18 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • the MBs, leading to the term “microstream”. Depending on the US intensity, the oscillating MBs come into close proximity with the cells and induce stresses on the cell membrane [75]. Consequently, the triggered shear forces cause disruption of the cell membrane and increase intracellular uptake of
  • proximity to the cell membrane. It has been shown that during inertial cavitation, in addition to direct oscillating MB–cell membrane interactions, a fluid microjet formed around the MBs can be responsible for providing secondary mechanical stress on the cell membrane and create transient disruption. In
  • fact, microjets can act as a microsyringe for delivering drugs into the cytosol during the collapse phase of the MB cavitation [74]. The maximal distance between the MB and the cell membrane should not exceed one MB diameter in order to exert a significant impact on the cell membrane [78]. Yu et al
PDF
Album
Review
Published 11 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • bilayers, which also contains an actuator and a clutch inside. When the robot is irradiated by ultraviolet light, the photoresponsive DNA will split into single strands and attach to the microtubules. The slide of microtubules causes the outer cell membrane to change shape, which transforms the robot from
PDF
Album
Review
Published 20 Jul 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • not internalized after antibody binding, the authors speculate that the NP-enriched cell membrane promotes some kind of “passive” internalization of the functionalized NPs. Protein tyrosine kinase 7 (PTK7) is a highly expressed receptor in AML cells and is mostly assigned to granulocytic lineage
  • NALM-6 cell membrane vesicles that were further decorated with aTGFβRII antibodies, attached via hypoxia-sensitive azobenzene linker. The membrane coating plays a dual role in the formulation. It guides the drug to the BM via receptor–ligand interaction between CXCR4 (a chemokine receptor expressed on
PDF
Album
Review
Published 29 Apr 2021

Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells

  • Sahar Pourhoseini,
  • Reilly T. Enos,
  • Angela E. Murphy,
  • Bo Cai and
  • Jamie R. Lead

Beilstein J. Nanotechnol. 2021, 12, 282–294, doi:10.3762/bjnano.12.23

Graphical Abstract
  • . However, for the AgNO3 treatment, this ratio increased in a dose-dependent manner (Table 2). Impact of PVP-AgNPs and Ag ions on viability and metabolic activity of PBMCs Cell membrane integrity as a marker for cell viability was measured by LDH release; a greater LDH release is an indication of more
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • ) or the red signal (corresponding to free RITC-BSA-SO-MNPs) were mainly localized at the cell membrane while clathrin (green signal) was detected in the cytoplasm (Figure 3B and Figure 3C). These results confirmed the dominant role of CME in the internalization of BSA-coated MNPs. In the presence of
  • Dyn, the signal of RITC-BSA-SO-MNPs and FITC–clathrin was co-localized on the cell membrane (yellow signal), indicating the accumulation of a fraction of nanoparticles in the clathrin-coated pits (Figure 3D). The pattern of the co-localization signal of RITC-BSA-SO-MNPs and FITC–clathrin implied that
  • surface charge), cell membrane properties (fluidity, type of receptors, and receptor density), and cell type [30][31][32]. For biomedical applications, the optimal size of nanocarriers is in the range of 95–200 nm because of the higher accumulation rate in tumors [33][34]. Spherical nanoparticles (NPs) in
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • aqueous medium intact, one may be tempted to conclude that ATP-driven or metabolic processes are responsible for the non-equilibrium character, that is, the larger extent of live cell membrane fluctuations [53][54][55]. Especially active membrane motions generated via the spectrin corset underneath the
  • . (a, e) SICM topography images. The acquisition time was 68 min per image. Cell membrane protrusions, so-called ruffles, can be seen as bright spots. (b, f) Corresponding bright-field microscopy images of the living cell taken prior to the SICM measurements. The cell has been digitally stained in
  • the cell nucleus. These tail-like features are characterized by heights of less than 100 nm and seem to show no flapping, which results in almost orthogonal orientation with respect to the cell membrane. (b) Depressions or holes in the cell membrane of ca. 500 nm depth. Similar features in literature
PDF
Album
Full Research Paper
Published 12 Mar 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • . The HIM pictures show the three-dimensional appearance of SARS-CoV-2 and the surface of Vero E6 cells at a multiplicity of infection of approximately 1 with great morphological detail. The absence of a conductive coating allows for a distinction between virus particles bound to the cell membrane and
  • bioimaging, especially for the imaging of interactions between viruses and their host organisms. Keywords: bioimaging; cell membrane; charge compensation; helium ion microscopy; SARS-CoV-2; Vero E6 cells; Introduction The last decade of helium ion microscopy (HIM) was characterized by a rapid exploration
  • without any conductive coating. The presented images allow for the identification of SARS-CoV-2 virus particles, their interaction with the cell membrane and a distinction between virus particles bound to the cell surface from those lying on it. Experimental Vero E6 cells were cultivated in Dulbecco's
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • -aminopropyltrimethoxysilane (AHAPS), which provides the nanoparticle surface with a positive charge, increasing their interaction with the cell membrane. The particles were characterized by scanning transmission electron microscopy (STEM), dynamic light scattering (DLS), electrophoretic light scattering (ELS), and
  • surface charge [51]. Positively charged silica particles interact more efficiently with the negatively charged cell membrane than negatively charged particles [45], which can also cause an enhanced uptake [51][52]. This process is supported by the fact that the hydrodynamic diameter of the AHAPS
  • cells. In contrast, the amine-functionalized particles were only adsorbed onto the cell membrane. Similar results were also obtained by Kurtz-Chalot et al., in which SiO2 nanoparticles with a high positive charge were more adsorbed than taken up by cells compared to the corresponding non-modified
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • mitotic HeLa cells that HIM is ready for ultrastructure research in cell biology. Research on the ultrastructure of cells with the HIM was subsequently continued by Schürmann et al., who presented HIM micrographs of cell-membrane nanodomains in mammalian cells [16]. HIM entered the field of virology in
  • fixation in 4% formaldehyde, rinsing in buffer, dehydration with ethanol, and air-drying – did not suffice to maintain the ultrastructure of the cell membrane as well as the fine layer of EPS, which HIM can, in principle, visualise. In the context of the microscopic analysis of bacterial and archaeal
PDF
Album
Review
Published 04 Jan 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • their excellent properties, CuO NPs have attracted great interest from the healthcare, food packaging, medical, and environmental industries [120][134]. This metal oxide is capable of disrupting the normal function of the cell membrane, changing its permeability and the cellular respiration process [135
  • production and clearance of ROS in cells are balanced by those enzymatic systems. Nevertheless, when these reactive species are in excess, a set of redox reactions can lead to cell death by the alteration of different essential structures (such as cell membrane, DNA, proteins, and electron transport chain
  • ) and metabolic routes which are responsible for maintaining the normal morphological and physiological cellular functions [153]. In addition to the oxidative stress, released metal ions from the metal oxide NPs can spread through the cell membrane into the cytoplasm and organelles. Metallic ions can
PDF
Album
Review
Published 25 Sep 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • thermophoresis and fluid flow can be used to highly concentrate (trap) nanoparticles and molecules [24][25]. Suspended biological cells can be easily thermophoretically manipulated by harnessing the permittivity gradient in the electric double layer of the charged surface of the cell membrane [26]. Optical
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Examination of the relationship between viscoelastic properties and the invasion of ovarian cancer cells by atomic force microscopy

  • Mengdan Chen,
  • Jinshu Zeng,
  • Weiwei Ruan,
  • Zhenghong Zhang,
  • Yuhua Wang,
  • Shusen Xie,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2020, 11, 568–582, doi:10.3762/bjnano.11.45

Graphical Abstract
  • an important factor determining the mechanical properties of cells [50]. Some researchers have shown that alterations in the cytoskeletal structure or functional defects of cells are associated with the ability of tumor cells to proliferate [51]. The actin filaments on the cell membrane can affect
PDF
Album
Full Research Paper
Published 06 Apr 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • , engineered nano-sized materials can exploit the cellular machinery to be internalized by cells. In fact, since the cell membrane blocks diffusion of complexes larger than ca. 1 kDa, nano-sized materials, such as nanomedicines, are transported into cells using energy-dependent mechanisms, unlike many small
  • adsorbing on the nanoparticles once they are introduced in biological environments and the resulting corona can screen the targeting moieties [15][16]. At the same time, it has emerged that the corona itself can be recognized by receptors at the cell membrane [17][18] and that this initial recognition can
  • the initial recognition at the cell membrane and the following mechanisms of internalization by cells. We discuss these aspects in relation to the application of nano-sized materials for nanomedicine. Challenges in characterizing these first events will be illustrated, together with a brief
PDF
Album
Review
Published 14 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • second part. A third part will focus on the interactions between the vectors with the cell membrane, either in its native form or in biomimetic models. Finally, cellular entrance processes and intracellular targeting will also be described, showing possible intracellular targeting methods as well as the
PDF
Album
Review
Published 15 Jan 2020
Other Beilstein-Institut Open Science Activities