Search results

Search for "closed loop" in Full Text gives 37 result(s) in Beilstein Journal of Nanotechnology.

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • pass towards the camera. The AFM is operated through a commercial AFM controller (Asylum Research). The controller can directly drive open-loop piezo scanners, because of its integrated high-voltage amplifier, as well as closed-loop scanners with an attached high voltage amplifier and closed-loop
  • frequency of 14 kHz while carrying the open-loop scanner. For closed-loop operation of the AFM, this piezo is equipped with a strain gauge sensor which is read out by the AFM controller. Results and Discussion Characterization of the microscope For successful switching from the large scanner to the nested
  • scanner can be held on any position by feeding a constant control voltage to the closed loop controller while small-area scans are performed by the open loop scanner. A crucial precondition for a nested high resolution scanner design is the stability of the housing large-area scanner. The position
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • , Ireland Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 10.3762/bjnano.6.19 Abstract Conventional closed loop-Kelvin probe force microscopy
  • [18], electrochemical [19] and ionic [15] functionality on the nanoscale have been developed. A paradigmatic example of such development is closed loop-Kelvin probe force microscopy (KPFM) [20], which has become a widely used voltage-modulated SPM technique for the measurement of surface potential
  • analytical modelling [61]. Conclusion The feasibility of force-based electrostatic and electrochemical measurements was investigated in liquid by probing the bias- and time-dependent response to a biased probe. The implementation of conventional closed loop-KPFM has been determined to be possible only when
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Highly NO2 sensitive caesium doped graphene oxide conductometric sensors

  • Carlo Piloto,
  • Marco Notarianni,
  • Mahnaz Shafiei,
  • Elena Taran,
  • Dilini Galpaya,
  • Cheng Yan and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 1073–1081, doi:10.3762/bjnano.5.120

Graphical Abstract
  • temperature regulated, HEPA (High-Efficiency Particulate Absorption) filtered air through the Cypher enclosure. Closed-loop temperature control isolates the AFM from room temperature variations, minimizing thermal drift for imaging. During measurements the temperature was kept constant at 26 °C. For all KPFM
PDF
Album
Full Research Paper
Published 17 Jul 2014

Unlocking higher harmonics in atomic force microscopy with gentle interactions

  • Sergio Santos,
  • Victor Barcons,
  • Josep Font and
  • Albert Verdaguer

Beilstein J. Nanotechnol. 2014, 5, 268–277, doi:10.3762/bjnano.5.29

Graphical Abstract
  • mapping of compositional variations [25] or as a closed loop, in which case the tip–sample stiffness kts can be computed [17][26]. More recently, the multifrequency AFM approach has been extended to employ three flexural modes [27] and/or simultaneous torsional modes [28], for which, typically, the
PDF
Album
Full Research Paper
Published 11 Mar 2014

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • Kelvin force microscope (FM-KFM) is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as “noise gain” from operational amplifier (OpAmp) design that offers the advantage of decoupling the noise performance study
  • designing operational amplifier circuits. The noise PSD is modeled as if the bandwidth was unlimited and later, the bandwidth is chosen as a function of the acceptable signal fluctuation. This approach is appropriate because (1) increasing the closed loop bandwidth of a stable feedback loop above a certain
  • shown later. The approximation, although valid only in the operating bandwidth below the closed loop cutoff frequency, is widely accepted as the noise gain. The reason will be explained later. The PLL controller Figure 2 shows the setup of the PLL and the attribution of its components to the blocks A
PDF
Album
Full Research Paper
Published 02 Jan 2014

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • degree of bending. The sample–tip motion is actuated by piezoelectric elements, which can be linearized by closed-loop control. The cantilever beam is usually oriented at an angle to the surface, which results in some tangential force being applied in addition to the normal force. A tangential motion
PDF
Album
Review
Published 29 Nov 2013

Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

  • Tatjana Ladnorg,
  • Alexander Welle,
  • Stefan Heißler,
  • Christof Wöll and
  • Hartmut Gliemann

Beilstein J. Nanotechnol. 2013, 4, 638–648, doi:10.3762/bjnano.4.71

Graphical Abstract
  • mode and the AFM tip was scanned at an angle of 90° relative to the longitudinal axis of the cantilever in several scan ranges. The AFM was used in a closed loop on all three axes. AFM images were evaluated with the IGOR software. SURMOF preparation For the preparation of the SURMOF on the grafted
PDF
Album
Full Research Paper
Published 11 Oct 2013

High-resolution dynamic atomic force microscopy in liquids with different feedback architectures

  • John Melcher,
  • David Martínez-Martín,
  • Miriam Jaafar,
  • Julio Gómez-Herrero and
  • Arvind Raman

Beilstein J. Nanotechnol. 2013, 4, 153–163, doi:10.3762/bjnano.4.15

Graphical Abstract
  • provide a natural starting point for the analysis of closed-loop dAFM imaging modes, which are ultimately designed to regulate the amplitude and phase lag of the oscillating probe rather than its time-varying deflection. From the approximate theory, we explore performance metrics for dAFM imaging modes
  • , such as (i) force sensitivity and resolution, (ii) detection bandwidth, (iii) disturbance mitigation and (iv) imaging stability. In support of our findings, we demonstrate atomic-resolution images of mica in water with FM, AM and DAM under similar operating conditions. Analysis of closed-loop dAFM
PDF
Album
Full Research Paper
Published 27 Feb 2013

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

  • Jannis Lübbe,
  • Matthias Temmen,
  • Sebastian Rode,
  • Philipp Rahe,
  • Angelika Kühnle and
  • Michael Reichling

Beilstein J. Nanotechnol. 2013, 4, 32–44, doi:10.3762/bjnano.4.4

Graphical Abstract
  • detection. For that purpose, the frequency noise originating from the same detection system but passed through different PLL filters is shown. As these measurements are performed in system C, the filters are modelled as a closed loop where the settings of the PI controller have a significant effect on the
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2013

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • employs strategies such as closed-loop scan elements that track the actual (x, y) position with deflection sensors in real time or the application of voltages in the form of distorted waveforms so that the resulting motion is linear with respect to voltage [38][45]. Allowing the piezotube to settle down
PDF
Album
Full Research Paper
Published 11 Sep 2012

Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

  • Miriam Jaafar,
  • David Martínez-Martín,
  • Mariano Cuenca,
  • John Melcher,
  • Arvind Raman and
  • Julio Gómez-Herrero

Beilstein J. Nanotechnol. 2012, 3, 336–344, doi:10.3762/bjnano.3.38

Graphical Abstract
  • of the cantilever with the amplitude and the frequency feedback loops enabled. Notice that the shape of the perturbation is a step function for both cases. However, for the open-loop case the perturbation is a sudden change in the amplitude of the driving force, whereas for the closed-loop
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2012

Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)

  • Christian Held,
  • Thomas Seyller and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2012, 3, 179–185, doi:10.3762/bjnano.3.19

Graphical Abstract
  • ]. The goal, and the justification, for processing is to obtain a minimal curvature of atomically flat terraces. Most NC-AFM operating in UHV do not offer the opportunity to linearize the piezo actuators in a closed-loop scheme. However, for ambient conditions such linearized instruments are commercially
PDF
Album
Full Research Paper
Published 29 Feb 2012
Other Beilstein-Institut Open Science Activities