Search results

Search for "modelling" in Full Text gives 174 result(s) in Beilstein Journal of Nanotechnology.

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • modelling and clinical imaging of the scaffolds will assist in the establishment of its micro- and nanoarchitecture, which will aid in the regulation and activation of the immune system for bone tissue repair and regeneration. Conclusion Chitosan is a naturally occurring biopolymer with appropriate
PDF
Review
Published 29 Sep 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • the NVE ensemble in order to avoid any impact of a thermostat on the collision cascade. Once properly equilibrated, the simulation of argon bombardment of pristine Si(100) was run for 50 ps, which was enough for the modelling of energy dissipation and sputtering, and then thermalized to 300 K. The
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • ][6]. The mandibles of the bee are instrumental in processing propolis, but they are also used for other tasks such as biting through cell caps and modelling wax [7]. The mandibles, sometimes also called jaws, are situated laterally on the lower part of the bee’s head (see Figure 3) and operate
PDF
Album
Full Research Paper
Published 14 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • environments by Collins et al. [81]. This technique exhibits a similar cantilever capacitive contribution to VCPD as AM-KPFM and is only quantitative if the relative gain of the two measured frequencies is known either through an additional measurement or through modelling [29]. Since the electrostatic
PDF
Full Research Paper
Published 12 Sep 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • study was carried out with different shapes (i.e., cylinder, platelet, and sphere) of nanoparticles (Cu/Al2O3 with ethylene glycol as the base fluid) using the finite element method (FEM) in MAPLE 18.0. For mathematical modelling and simulation of hybrid nanofluids, Shah et al. [33] considered a two
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Quantitative dynamic force microscopy with inclined tip oscillation

  • Philipp Rahe,
  • Daniel Heile,
  • Reinhard Olbrich and
  • Michael Reichling

Beilstein J. Nanotechnol. 2022, 13, 610–619, doi:10.3762/bjnano.13.53

Graphical Abstract
  • stabilised sensor oscillation amplitude A. A sophisticated analysis of the Δf(zp) curves measured with different oscillation amplitudes A yields a precise result [2] for the force curve, yet with an arbitrary origin along the z-axis. In theoretical modelling and analysis of tip–sample interactions, it has
PDF
Album
Full Research Paper
Published 06 Jul 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • molecular dynamics. The LAMMPS package was employed and the EDIP as well as AIREBO carbon potentials were used depending on more technical simulation-specific parameters. As reported in the reference [71], the simulations included only carbon atoms. The modelling was achieved through the following steps: (1
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Controllable two- and three-state magnetization switching in single-layer epitaxial Pd1−xFex films and an epitaxial Pd0.92Fe0.08/Ag/Pd0.96Fe0.04 heterostructure

  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Gulnaz F. Gizzatullina,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2022, 13, 334–343, doi:10.3762/bjnano.13.28

Graphical Abstract
  • on the applied magnetic field for (a) φΗ = 6°, θΗ = 90° and (c) φΗ = 0°, θΗ = 7°; points: experimental data, lines: results of the modelling with Equation 2 and Equation 3. (b) Rotation of the magnetic moment of the film (within the same model) for φΗ = 6°, θΗ = 90°; the vectors show the direction of
  • K; points: experimental data, lines: results of the modelling with Equation 2 and Equation 3. (b) Rotation (within the model) of the magnetic moment of the film with a step of 20 Oe for φH = 90.5° under the field variation from +500 Oe to −500 Oe; insert: the geometry of the experiment. (c
PDF
Album
Full Research Paper
Published 30 Mar 2022

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • multiscale simulation involving continuum modelling in combination with MD simulations would be helpful to connect the atomistic description with macroscopic behavior, for example, as given by the Stribeck curve [5]. A substrate can also provide significant friction due to electron or phonon excitations [65
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

  • Mikhail M. Krasnov,
  • Natalia D. Novikova,
  • Roger Cattaneo,
  • Alexey A. Kalenyuk and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 1392–1403, doi:10.3762/bjnano.12.103

Graphical Abstract
  • junctions; numerical modelling; terahertz sources; Introduction Tunable, monochromatic, continuous-wave (CW), compact, and power-efficient terahertz (THz) sources of electromagnetic waves (EMW) are required for a broad variety of applications [1]. However, the key obstacle, colloquially known as “the THz
  • -heating background. This indicates a much larger RPE in whisker-based devices [40]. Numerical Results To understand the reported difference between crystal- and whisker-based devices and to suggest possible optimizations of THz sources, we performed numerical modelling using the 3D finite element software
  • the radiative power. Their goal is to reveal general trends and geometrical factors contributing to design aspects of Bi-2212 THz sources. Modelling of heat transfer Accurate analysis of self-heating in Bi-2212 mesas is a complex non-linear problem [28][30][31][32][36][38]. Simulations presented below
PDF
Album
Full Research Paper
Published 21 Dec 2021

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
  • hours post-fertilisation, at concentrations of 250 ppm or less. Models were developed using data from the Nanomaterial Biological-Interactions Knowledgebase for a dataset of 44 diverse, coated and uncoated metal or, in one case, metalloid oxide nanomaterials. Different modelling approaches were
  • these modelling results are on truly external data, which were not used to select the single descriptor model. This will require further laboratory work to generate comparable data to those studied herein. Keywords: data augmentation; embryonic zebrafish; machine learning; nanosafety; nano-QSAR
  • University), with minimal, clearly documented, variations in experimental conditions, and were linked to comparable physicochemical characterisation data. However, the first published modelling studies of NBI Knowledgebase data treated the characterisation data, used as input to predictive models, in a
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
PDF
Album
Full Research Paper
Published 13 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • on ITO glass. The inset shows the TEM image of AuNP with a particle size of 20 nm. (c) The electromagnetic field distribution around AuNP with 20 nm diameter simulated by finite-difference time-domain modelling. Figure 6a–c was adapted from [51] (© 2018 J. Feng et al., distributed under the terms of
PDF
Album
Review
Published 24 Sep 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • metal and 2D materials [9][10][21][26], first principles modelling is a powerful tool that permits the investigation of the detailed interactions of metals and 2D materials at the atomic scale. In particular, understanding the nucleation of metals on 2D materials will be valuable for the design of
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Determining amplitude and tilt of a lateral force microscopy sensor

  • Oliver Gretz,
  • Alfred J. Weymouth,
  • Thomas Holzmann,
  • Korbinian Pürckhauer and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2021, 12, 517–524, doi:10.3762/bjnano.12.42

Graphical Abstract
  • ]. Comparing the effect of tilt on normal versus lateral force microscopy In addition to the amplitude, the tilt θ of a LFM sensor is of great importance. Usually, θ is ignored in normal AFM experiments because it has a smaller effect on the observed values of Δf. This can be seen by modelling ⟨kts⟩ of a
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2021

Intracranial recording in patients with aphasia using nanomaterial-based flexible electronics: promises and challenges

  • Qingchun Wang and
  • Wai Ting Siok

Beilstein J. Nanotechnol. 2021, 12, 330–342, doi:10.3762/bjnano.12.27

Graphical Abstract
  • characteristics of signals. Indeed, in recent years, the modular view of brain functions has fallen out of favour, and researchers generally believe that various brain regions function simultaneously and interactively. New analysis methods, such as functional connectivity and dynamic causal modelling, have been
PDF
Album
Review
Published 08 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • areas of freestanding CNM. Intensity profiles across a feature (a rupture and a fold) show that the portion of direct SE from the CNM is negligible for the STIM analysis (Figure 2c). Monte Carlo simulations and signal/contrast modelling In order to understand the physics behind the STIM signal, the
PDF
Album
Full Research Paper
Published 26 Feb 2021

Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy

  • Jeremiah Croshaw,
  • Thomas Dienel,
  • Taleana Huff and
  • Robert Wolkow

Beilstein J. Nanotechnol. 2020, 11, 1346–1360, doi:10.3762/bjnano.11.119

Graphical Abstract
  • bare and H-terminated surface) while both the bare dimer and single DB have an additional covalent interaction with the tip that is not seen above H–Si atoms. Complementary modelling of the DB defect and all subsequent defects of Figure 2 as imaged with STHM, H-apex AFM, and Si-apex AFM has been done
  • exploration is required to support this. A potential variation of the vacancy where one of the backbonded DBs is terminated with an H is presented in Supporting Information File 1, Figure S13 and the probe particle modelling of the Si vacancy “I” variety shown in Figure S14. Figure 4e–h shows another variant
  • above the defect in 4t show a reduced minimum, as well as a horizontal shift in position towards the defect centre due to a polaronic distortion induced by the vacancy’s localized negative charge. Molecular dynamics relaxation was unable to capture this effect as part of the modelling, so the ball and
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2020

Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet

  • Ganji Narender,
  • Kamatam Govardhan and
  • Gobburu Sreedhar Sarma

Beilstein J. Nanotechnol. 2020, 11, 1303–1315, doi:10.3762/bjnano.11.114

Graphical Abstract
  • using Casson nanofluids has been presented. The governing partial differential equations (PDEs) have been converted to a set of ordinary differential equations (ODEs) through suitable similarity transformations and the numerical solution has been derived by the shooting method. Mathematical Modelling
PDF
Album
Full Research Paper
Published 02 Sep 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • , whereas the volatile products ones are pumped out of the process chamber. Normally, the final deposit is a mixture of carbon, metallic elements and oxygen. As clearly described using analytical modelling [29] and Monte-Carlo simulations [30], the vertical growth of 3D nano-objects by He+ FIBID is mainly
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • the influence of the material properties and preparation of fresh LFP samples on the ESM signal and showed that the material structure influences the electrochemical activity [44][45]. Eshghinejad et al. used LFP for the validation of their theoretical and modelling framework and demonstrated the
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • the nanostructures are calculated by finite-difference time-domain (FDTD) simulations. For calculations a novel approach based on modelling the whole sample with a realistic shape of the nanoparticles, instead of full spheres, was used. This led to a very good agreement with the experiment. Keywords
  • shapes. Here, for the first time, a realistic shape of the nanoparticles (according to the TEM images) has been taken into account in the FDTD simulations, instead of modelling them straightforwardly as spheres. Probably the most common example in which the amplification of the local electromagnetic
  • , modelled as spheres truncated by 25% and flattened on the y axis to 60% of the initial size (Figure 1) on a Si substrate were reproduced on a sample of size 2.7 × 3.0 µm (Figure 2). Modelling the whole sample with regards to a realistic shape of the nanoparticles based on TEM images (see Figure 8 below
PDF
Album
Full Research Paper
Published 25 Mar 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • significant instrumentation challenges are anticipated, the modelling results are promising and suggest that Fourier-based higher-harmonics current measurement may enable the development of a reliable intermittent-contact conductive AFM method. Keywords: atomic force microscopy (AFM); conductivity; current
PDF
Album
Full Research Paper
Published 13 Mar 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • -fold twinned particles and lower temperatures due to limited computational power and time. Advanced modelling and in-depth theoretical analysis of the rounding process lies outside the scope of the present study and should be addressed separately. Nevertheless, this relatively simple model agrees well
PDF
Album
Full Research Paper
Published 06 Jan 2020
Other Beilstein-Institut Open Science Activities