Search results

Search for "multimodal" in Full Text gives 59 result(s) in Beilstein Journal of Nanotechnology.

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • theranostics in the future. Keywords: Au nanorods; cancer theranostics; fluorescent bioimaging; folate; polydopamine; targeted phototherapy; Introduction Multifunctional imaging and combined multimodal therapy strategies are very promising in cancer theranostics [1][2]. Possible way for such purpose is to
  • efficient multimodal cancer treatments both in vitro and in vivo. An ideal nanorod coating for efficient nanocomposite formation should meet several important criteria. First, the resulting nanoparticles should be nontoxic and colloidally stable in blood serum. Second, the shell should have high loading
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • biological application and therapy of human diseases [26][27]. In this work, we demonstrated a novel GNR@CdSe/ZnS multimodal nanostructure in aqueous phase. We chose CdSe/ZnS QDs as a PL contributor due to its high degree of brightness, excellent photostability, and good spectral overlap with GNRs. We then
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • be adjusted by heterogeneous nucleation of NPs on noble metal seeds [21][22]. Additionally, such bifunctional Fe3O4–Au NPs are potentially applicable for targeted drug delivery, enhanced hyperthermia, multimodal imaging and theranostics [8][23][24][25][26][27]. In this work, we present the first size
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • : biofunctional surfaces; inkjet printing; microstructures; nanolithography; nanoparticles; Introduction Many applications require well-organized micro- and nanoscale patterning of metallic nanoparticles. Examples include high-performance optics [1], multimodal waveguides [2], biosensors [3] and biomaterials [4
PDF
Album
Full Research Paper
Published 04 Sep 2018

Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation

  • Alina M. Ermakova,
  • Julia E. Morozova,
  • Yana V. Shalaeva,
  • Victor V. Syakaev,
  • Aidar T. Gubaidullin,
  • Alexandra D. Voloshina,
  • Vladimir V. Zobov,
  • Irek R. Nizameev,
  • Olga B. Bazanova,
  • Igor S. Antipin and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 2057–2070, doi:10.3762/bjnano.9.195

Graphical Abstract
  • micelles exhibited a slower release rate. In the first 10 h, the released amount of 3 + RhB micelles was around 40%, then the release slowed down and about 30% of the substrate was released over a period of the following 80 h. The slower release of RhB-loaded micelles is attributed to the multimodal
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • photocarrier lifetime is quantified by performing KPFM measurements under frequency-modulated illumination. Our multimodal approach provides a unique way to investigate the interplay between the charges and ionic species, the photocarrier-lattice coupling and the photocarrier dynamics in hybrid perovskites
  • modulation of the illumination source. Thus, it has been possible to analyze both the photostriction and carrier lifetime as a function of the optical power. Our multimodal approach opens up new possibilities to investigate a wide range of photo-physical process and dynamical phenomena in organic–inorganic
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • distribution (≈10 nm), whereas S3 has a multimodal pore size distribution. The distributions of pores in other samples synthesized with HCl (Urea_15, Thiourea_15) and H2SO4 (S3_N0.5, S3_N0.5+1% Pt) are similar to the distributions shown in Figure 3. Band gap measurements The diffuse reflectance, R, of the
PDF
Album
Full Research Paper
Published 04 Jun 2018

Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

  • Anulekha De,
  • Sucheta Mondal,
  • Sourav Sahoo,
  • Saswati Barman,
  • Yoshichika Otani,
  • Rajib Kumar Mitra and
  • Anjan Barman

Beilstein J. Nanotechnol. 2018, 9, 1123–1134, doi:10.3762/bjnano.9.104

Graphical Abstract
  • observe a distinct variation in the magnetization dynamics. For all φ and a-values, multimodal SW spectra are observed corresponding to the damped nonuniform oscillations [36]. The experimental data of bias-field-angle dependence of SW spectra for S1 has been taken at H = 1.0 kOe, whereas for S2 the data
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2018

Optical techniques for cervical neoplasia detection

  • Tatiana Novikova

Beilstein J. Nanotechnol. 2017, 8, 1844–1862, doi:10.3762/bjnano.8.186

Graphical Abstract
PDF
Album
Review
Published 06 Sep 2017

Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

  • Dovile Baziulyte-Paulaviciene,
  • Vitalijus Karabanovas,
  • Marius Stasys,
  • Greta Jarockyte,
  • Vilius Poderys,
  • Simas Sakirzanovas and
  • Ricardas Rotomskis

Beilstein J. Nanotechnol. 2017, 8, 1815–1824, doi:10.3762/bjnano.8.183

Graphical Abstract
  • Institute of Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius, LT-10222, Lithuania 10.3762/bjnano.8.183 Abstract Upconverting nanoparticles (UCNPs) are promising, new imaging probes capable of serving as multimodal contrast agents. In this study, monodisperse and
  • contrast probe for in vivo bioimaging. Keywords: cancer theranostics; core–shell structure; luminescence; multimodal; nanoparticles; upconverting nanoparticles; upconversion; Introduction Lanthanide-doped multimodal upconverting nanoparticles (UCNPs), which can convert near-infrared (NIR) radiation into
  • amphiphilic polymer coating [18] have been developed in order to transfer nanoparticles with hydrophobic surfaces into aqueous media. Furthermore, the multimodal UCNP surface modification field still lacks reference materials and established protocols for functionalization and targeting. Some studies showed
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2017

Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

  • Arūnas Jagminas,
  • Agnė Mikalauskaitė,
  • Vitalijus Karabanovas and
  • Jūrate Vaičiūnienė

Beilstein J. Nanotechnol. 2017, 8, 1734–1741, doi:10.3762/bjnano.8.174

Graphical Abstract
  • nanomedicine, biocompatible iron oxide-based NPs have attracted particular interest due to their size-dependent magnetic, optical and chemical properties that allow for the design of NPs for multimodal imaging and photothermal therapy of cancer cells [1]. Dual-imaging probes, capable to perform simultaneously
PDF
Album
Full Research Paper
Published 22 Aug 2017

Calcium fluoride based multifunctional nanoparticles for multimodal imaging

  • Marion Straßer,
  • Joachim H. X. Schrauth,
  • Sofia Dembski,
  • Daniel Haddad,
  • Bernd Ahrens,
  • Stefan Schweizer,
  • Bastian Christ,
  • Alevtina Cubukova,
  • Marco Metzger,
  • Heike Walles,
  • Peter M. Jakob and
  • Gerhard Sextl

Beilstein J. Nanotechnol. 2017, 8, 1484–1493, doi:10.3762/bjnano.8.148

Graphical Abstract
  • nanoparticles; magnetic resonance imaging (MRI); multifunctional nanoparticles; multimodal imaging; photoluminescence; Introduction In recent years, medical imaging has become an important approach in the fields of diagnostics, therapy and regenerative medicine. Besides the classical technology of X-ray
  • imaging modality has its advantages and disadvantages. The integration of multiple functions into one NP system yields synergies and allows for a precise and fast diagnosis of diseases. Recently, various multimodal imaging probes on the basis of different functional NPs were fabricated for more accurate
  • fluorolytic sol–gel process [33]. The stability and biocompatibility of CaF2 makes it an attractive material for biomedical applications [28][29]. In addition, due to the high capacity to accept lanthanide ions, CaF2 is suitable for the preparation of CAs for multimodal imaging [24]. In this study, we report
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2017

Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation

  • Kati Erdmann,
  • Jessica Ringel,
  • Silke Hampel,
  • Manfred P. Wirth and
  • Susanne Fuessel

Beilstein J. Nanotechnol. 2017, 8, 1307–1317, doi:10.3762/bjnano.8.132

Graphical Abstract
  • in combination with DTX and MMC evoked additive to partly synergistic anti-tumor effects. CNFs and CNTs possess the ability to sensitize cancer cells to a wide range of structurally diverse chemotherapeutics and thus represent an interesting option for the development of multimodal cancer therapies
  • with our previous findings, this study shows that CNFs and CNTs can enhance the cytotoxic effects of a wide range of structurally diverse chemotherapeutics. Thus, the development of multimodal therapies based on carbon nanomaterials seems very promising, as carbon nanomaterials possess great potential
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2017

Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement

  • Steven Ian Moore,
  • Michael G. Ruppert and
  • Yuen Kuan Yong

Beilstein J. Nanotechnol. 2017, 8, 358–371, doi:10.3762/bjnano.8.38

Graphical Abstract
  • multifrequency AFM and has the potential to provide higher resolution imaging on higher order modes. Keywords: atomic force microscopy; multifrequency AFM; multimodal AFM; piezoelectric cantilever, self-sensing; Introduction The invention of the atomic force microscope (AFM) [1] provided for the observation of
PDF
Album
Full Research Paper
Published 06 Feb 2017

Nanoanalytics for materials science

  • Thilo Glatzel and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1674–1675, doi:10.3762/bjnano.7.159

Graphical Abstract
  • high-sensitivity chemical information at the nanoscale are of utmost importance for future developments [1]. One of the possible approaches is based on bimodal or even multimodal nanoanalysis, which was increasingly developed during the last decade. Other important aspects that have to be considered
  • and reliable understanding and accurate physical models. Furthermore, a reliable and easy way to extract a maximum of information out of the multimodal datasets, efficient data visualization strategies, and methods for analysis, mining and modeling are of utmost importance. This Thematic Series on
PDF
Editorial
Published 10 Nov 2016

Generalized Hertz model for bimodal nanomechanical mapping

  • Aleksander Labuda,
  • Marta Kocuń,
  • Waiman Meinhold,
  • Deron Walters and
  • Roger Proksch

Beilstein J. Nanotechnol. 2016, 7, 970–982, doi:10.3762/bjnano.7.89

Graphical Abstract
  • include bimodal [28][29][30][31][32][33], trimodal [34] or more generally multimodal/multifrequency [35] techniques, and have demonstrated quantitative mapping without compromising on the high speeds that define parametric imaging techniques. Currently, state-of-the-art bimodal methodologies are mostly
PDF
Album
Full Research Paper
Published 05 Jul 2016

Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

  • Benjamin Pollard and
  • Markus B. Raschke

Beilstein J. Nanotechnol. 2016, 7, 605–612, doi:10.3762/bjnano.7.53

Graphical Abstract
  • ][13][14]. Here, we combine IR s-SNOM and force–distance spectroscopy for a multimodal study of heterogeneous molecular thin films. Although s-SNOM is commonly already based on intermittent-contact atomic force microscopy (AFM), the enabled compatibility with numerous advanced scanning probe modalities
  • force–distance spectroscopy to create a multimodal dataset of material and optical properties of nanoscale heterogeneous soft matter. Using a single AFM/s-SNOM setup and a metallized scanning probe tip, we produced images of a particular 500 × 500 nm size region of a PS-b-PMMA film via IR s-SNOM and
PDF
Album
Full Research Paper
Published 22 Apr 2016

In situ observation of deformation processes in nanocrystalline face-centered cubic metals

  • Aaron Kobler,
  • Christian Brandl,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2016, 7, 572–580, doi:10.3762/bjnano.7.50

Graphical Abstract
  • ncPda (dA = 25 nm) and ncAuPda (dA = 26 nm). Both systems have a multimodal distribution with peaks in the small angle regime (<10°), a ≈39° regime (Σ9-rotation), and a ≈60° twin regime (Σ3-rotation) (a similar distribution has been found in two other Pd–Au systems not shown here). The small angle
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2016

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • to strain sensitivity. The applicability of the multimodal self-sensing principle is verified by bimodal AFM experiments to obtain qualitative phase contrast on the higher eigenmode when imaging a soft polymer blend. Modeling Piezoelectric constitutive laws By sputtering a piezoelectric layer to the
PDF
Album
Full Research Paper
Published 24 Feb 2016

3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate)

  • Eduardo Guzmán,
  • Armando Maestro,
  • Sara Llamas,
  • Jesús Álvarez-Rodríguez,
  • Francisco Ortega,
  • Ángel Maroto-Valiente and
  • Ramón G. Rubio

Beilstein J. Nanotechnol. 2016, 7, 197–208, doi:10.3762/bjnano.7.18

Graphical Abstract
  • layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three
PDF
Album
Full Research Paper
Published 05 Feb 2016

A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

  • Santiago D. Solares

Beilstein J. Nanotechnol. 2015, 6, 2233–2241, doi:10.3762/bjnano.6.229

Graphical Abstract
  • modified to implement other controls schemes in order to aid in the interpretation of AFM experiments. Keywords: atomic force microscopy (AFM); modeling; multifrequency; multimodal; polymers; simulation; spectroscopy; standard linear solid; tapping-mode AFM; viscoelasticity; Introduction The
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2015

High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

  • Yves Fleming and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2015, 6, 1091–1099, doi:10.3762/bjnano.6.110

Graphical Abstract
  • of the TiCN cermet. Keywords: alloy; atomic force microscopy (AFM); correlative microscopy; differential sputtering; in situ; multimodal imaging; nano-cluster; polymer blend; secondary ion mass spectrometry (SIMS); scanning probe microscopy (SPM); SIMS artefacts; sputter-induced effects; sputter
  • rate; Introduction With the progress of miniaturisation, driven by future needs in various fields in materials and life sciences, the 3D analysis of devices and material structures becomes increasingly challenging. As a consequence, the interest for performing bimodal or even multimodal nano-analysis
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • applications for diagnosis and therapy of disease sites. Through smart and careful chemical modifications of the nanoparticle surface, these can be converted to multifunctional tiny objects which in turn can be used as vehicle for delivering multimodal imaging agents and therapeutic material to specific target
  • sites in vivo. In this sense, bimodal imaging probes that simultaneously enable magnetic resonance imaging and fluorescence imaging have gained tremendous attention because disease sites can be characterized quick and precisely through synergistic multimodal imaging. But such hybrid nanocomposite
  • stages of growth and, thus, plays an integral part in medical diagnosis. All the currently available diagnostic imaging methods have their intrinsic advantages and disadvantages. The combination of multimodal imaging and theranostics will lead to cutting-edge technologies in which the potential of the
PDF
Album
Review
Published 24 Feb 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • form double-sided asymmetric shapes right up to nanoflowers offers the possibility for multimodal imaging and multiple drug loading without steric hindrance [28][29][30][31]. These nanoparticles are very new in the field of nanomedicine and poorly investigated despite their interesting features
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

High-frequency multimodal atomic force microscopy

  • Adrian P. Nievergelt,
  • Jonathan D. Adams,
  • Pascal D. Odermatt and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2014, 5, 2459–2467, doi:10.3762/bjnano.5.255

Graphical Abstract
PDF
Album
Full Research Paper
Published 22 Dec 2014
Other Beilstein-Institut Open Science Activities