Search results

Search for "proteins" in Full Text gives 393 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti

  • Matheus Alves Siqueira de Assunção,
  • Douglas Dourado,
  • Daiane Rodrigues dos Santos,
  • Gabriel Bezerra Faierstein,
  • Mara Elga Medeiros Braga,
  • Severino Alves Junior,
  • Rosângela Maria Rodrigues Barbosa,
  • Herminio José Cipriano de Sousa and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 1566–1575, doi:10.3762/bjnano.15.123

Graphical Abstract
  • vectors are nanomaterials or nanomaterial-based formulations as so-called nanopesticides, providing new, modern, and low-cost formulations [9][10] with the ability to penetrate through the exoskeleton into mosquito cells, causing mortality after binding to proteins or DNA [11]. Nanomaterials provide
  • of silver nanoparticles (yeasts, plants, fungi, algae, and bacteria), which are capable of reducing inorganic metal ions to metallic nanoparticles quickly [40][41]. Among these, algae have been highlighted because of their immense bioactive potential of compounds such as accessory pigments, proteins
PDF
Album
Review
Published 04 Dec 2024

Ultrablack color in velvet ant cuticle

  • Vinicius Marques Lopez,
  • Wencke Krings,
  • Juliana Reis Machado,
  • Stanislav Gorb and
  • Rhainer Guillermo-Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1554–1565, doi:10.3762/bjnano.15.122

Graphical Abstract
  • . Confocal laser scanning microscopy micrographs (maximum intensity projections) showing different types of autofluorescence exhibited by the cuticle. Blue regions contain resilin or some other proteins, while green, orange, and red structures represent different degrees of sclerotization. Black regions are
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • administration also suffers from enzymatic degradation including peptidase and protease activity, making it challenging to deliver peptides and proteins [29][30]. Yet, the intranasal route still yields lower enzymatic degradation and higher bioavailability in the brain [31]. While the challenges of the
  • critical literature reviews on N2B delivery of peptides and proteins. Considering the recent advancements and publications in the field, we highlight N2B delivery of biopharmaceuticals while emphasizing mAbs, RNA delivery, and NP functionalization techniques for better targeting the brain [150]. Despite
PDF
Album
Review
Published 12 Nov 2024

A biomimetic approach towards a universal slippery liquid infused surface coating

  • Ryan A. Faase,
  • Madeleine H. Hummel,
  • AnneMarie V. Hasbrook,
  • Andrew P. Carpenter and
  • Joe E. Baio

Beilstein J. Nanotechnol. 2024, 15, 1376–1389, doi:10.3762/bjnano.15.111

Graphical Abstract
  • procoagulant. More work on specific coagulation factor adsorption and activation, such as thrombin, fibrinogen, and complement system proteins is needed to fully characterize the surface. Studies on FXII and platelet adhesion in plasma and whole blood models would provide more insight into observed activation
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • modulation, as it facilitates the delivery of therapeutic agents such as genetic material, proteins, and chemotherapeutics [182][183]. Incorporating principles from the finely tuned frequency production observed in Hymenoptera could significantly enhance this technology, resulting in more precise and
PDF
Album
Review
Published 05 Nov 2024

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • elegans. Ouyang et al. [12] showed that small molecules (e.g., polycyclic aromatic hydrocarbons) and heavy metals, present in the natural water as nanocolloids, potentiate GO’s phytotoxicity. Moreover, biomolecules such as polysaccharides, proteins, lipids, and humic acids may interact with the material’s
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • flexible because of the lower degree of sclerotization, and (3) blue areas are rubber-like with a relatively high proportion of resilin-like proteins or unsclerotized chitin. This method has already been widely applied in the literature [37][38][39][40]. The insects to be observed were frozen in a
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • (targeting agent) to provide selective interaction with tumor cell lines in biological media. The stability of these dually functionalized SiO2NPs is preserved in unprocessed human plasma while yielding a decrease in the number of adsorbed proteins. Experiments in murine blood further proved that these
  • of NPs accumulates in tumors and <0.0014% are internalized by the cells [8][9][10][11]. Once in contact with blood, NPs interact with a series of physiological components (e.g., amino acids, salts, and proteins), which can induce poor colloidal stability or changes in the original chemical and
  • biological identity of these particles, impairing their therapeutic efficiency [12][13][14][15]. Proteins and other biomolecules can be adsorbed on the surface of NPs (protein corona formation), masking their original functionality and hiding their target ability [16][17][18]. Protein corona can further lead
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs
  • proteins (Figure 2A) [52][53][54][55][56][57][58]. This occurs because of the small size and high surface curvature of usNPs, which restrict the binding interface for proteins. As a result, protein spreading and denaturation on the usNP surface are minimized, and fewer non-covalent interactions form
  • between usNPs and proteins compared to interactions between larger NPs and proteins. Quantitatively, Figure 2B compares experimentally determined apparent dissociation rate constants (koff) and corresponding residence times (tr = 1/koff) for protein interactions with large (conventional) and ultrasmall
PDF
Album
Review
Published 30 Sep 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • durations. While numerous biodegradable polymeric nanoparticles derived from proteins or polysaccharides have been studied for drug delivery and controlled drug release in the recent past, the emphasis of research has now turned towards synthetic polymers, resulting in significant advancements in this field
PDF
Album
Full Research Paper
Published 26 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • imine bonds with proteins prevalent in many tissues. The controlled release and bioavailability of DOX encapsulated in the alginate matrix enabled the creation of drug-eluting adhesive patches, which were successful in reducing human lung cancer cell (A549) survival [92]. Another research studied
  • diagnostics. Researchers have successfully utilized alginate nanoparticles for the detection and quantification of various analytes, such as proteins, enzymes, nucleic acids, and pathogens. For example, alginate nanoparticles have been used for the detection of cancer biomarkers in body fluids, allowing for
PDF
Album
Review
Published 22 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • solid choice to prevent massive implant degradation. Carbon nanomaterial coatings can prevent adverse chemical reactions triggered by both the adsorption of proteins and the metabolism of cells [151][152][153]. Hassan et al. [97] extensively investigated the effect of graphene and graphitic coatings as
PDF
Album
Review
Published 16 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • proteins, including dominant-negative mutants, may, due to their high concentration, facilitate low-affinity interactions with partner proteins that they normally would not bind to. Furthermore, we have the challenge that a given molecule can be involved in more than one pathway. For instance, cdc42 is
  • . However, if binding to the cell surface and cross-linking plasma membrane lipids or proteins, they may even induce their own uptake [61][62]. For instance, cross-linking of receptors by quantum dots (QDs) with Tat proteins can induce Rac activation and macropinocytosis [61]. Similarly, cross-linking
  • (PEG) chains (e.g., density and chain lengths) and how these chains affect the binding of proteins to the NPs. The protein corona most often contains proteins involved in complement activation, macrophage uptake, lipid metabolism, and blood coagulation [82][83][84][85]. A challenge regarding the
PDF
Album
Perspective
Published 12 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • to detect a wide range of biomolecules, such as proteins, DNA, and antibodies. This article presents a comprehensive review of advancements in the architectures of FET-based biosensors aiming to enhance device performance in terms of sensitivity, detection time, and selectivity. The review
  • beneficial [18]. Additionally, biosensors have been used to detect SARS-CoV-2, which causes COVID-19-related severe respiratory distress [19][20]. For the accurate detection of COVID-19 RNA [21][22], proteins [23][24], and virus particles [25][26], various methods have been proposed, such as CRISPR systems
  • biosensors for accurate detection of viruses [25], cancer [15], proteins [36], DNA, glucose [17], and nucleic acids has been strongly developed [37]. On the other hand, specific biomolecule classifications by microbiologists has led to the realization and development of different biosensors, significantly
PDF
Album
Review
Published 06 Aug 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • system. A zero charge or a slightly negative charge on the nanoparticles would prevent them from aggregating and interacting with blood proteins [43]. Our nanoparticles’s zeta potential in ten-time diluted PBS was −84.3 ± 2.5 mV and −77.4 ± 3 mV for F127-folate@PLGA/CHL/IR780 and F127@PLGA/CHL/IR780
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • , antibiotics, anticancer agents, proteins, DNA, RNA, and growth factors for tissue regeneration [6][7][8]. In addition, nanofibers as drug delivery systems provide rapid or delayed and controlled release of pharmaceuticals. Apart from being implantable drug delivery systems, nanofiber scaffolds can contribute
  • bone [16]. The most dominant component of the organic matrix is collagen, which is synthesized by osteoblasts and performs many mechanical functions. Collagen is a protein found abundantly not only in bones but also in almost every tissue of mammals. One third of all body proteins are collagens [20
  • , which is closely related to mineralization, other non-collagenous organic proteins such as osteonectin and osteopontin, as well as proteoglycans [10][12][22]. The cellular structure of bone tissue Bone, a living tissue, is constantly changing with the help of cells playing different roles. There are a
PDF
Album
Review
Published 25 Jul 2024

Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification

  • Indrasis Dasgupta,
  • Totan Das,
  • Biplab Das and
  • Shovanlal Gayen

Beilstein J. Nanotechnol. 2024, 15, 909–924, doi:10.3762/bjnano.15.75

Graphical Abstract
  • because of their enhanced reactivity, large surface area, and tunable properties [7][8]. ENMOs can enter the human body [9] and engage with various biomacromolecules, including sugars, lipids, proteins, and nucleic acids. These biomolecules rapidly envelop the nanoparticle surface, creating a dynamic
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2024

Simultaneous electrochemical determination of uric acid and hypoxanthine at a TiO2/graphene quantum dot-modified electrode

  • Vu Ngoc Hoang,
  • Dang Thi Ngoc Hoa,
  • Nguyen Quang Man,
  • Le Vu Truong Son,
  • Le Van Thanh Son,
  • Vo Thang Nguyen,
  • Le Thi Hong Phong,
  • Ly Hoang Diem,
  • Kieu Chan Ly,
  • Ho Sy Thang and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 719–732, doi:10.3762/bjnano.15.60

Graphical Abstract
  • through edge effects. Edge-functionalized GQDs have oxygen-containing functional groups such as hydroxy, carboxyl, carbonyl, and epoxy groups, which can conjugate to various biological/organic/inorganic molecules such as proteins, antibodies, or metal ions [12]. The capability of electron transfer/energy
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • detecting the presence and alteration of chemicals [142], which differs from the way hairs sense touch and vibration. The binding of receptor proteins on sensory cells to chemicals in the air or solution initiates a sequence of biochemical reactions, resulting in the production of electrical signals, which
PDF
Album
Review
Published 06 Jun 2024

On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems

  • Shan He,
  • Julen Segura Abarrategi,
  • Harbil Bediaga,
  • Sonia Arrasate and
  • Humberto González-Díaz

Beilstein J. Nanotechnol. 2024, 15, 535–555, doi:10.3762/bjnano.15.47

Graphical Abstract
  • proteins, n(cd2) = 7 cell lines (SH-SY5Y, CHO-K1, HEK293, PC-12, CHO, HEK-293T, and HuT78), and n(cd3) = 7 model organisms (Homo sapiens, Rattus norvegicus, Mus musculus, Cavia porcellus, Canis lupus familiaris, Macacafas cicularis, and Caenorhabditis elegans). The information downloaded from ChEMBL also
  • two different partitions (subsets) of variables cI and cII. The partition cI defines the biological characteristics; it contains, among other things, cd0 = biological activity parameters of NDDs (e.g., IC50, Ki, potency, and time) and cd1 = type of proteins involved in the NDs. The partition cII
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • cells, BNZ is reduced by oxygen-sensitive nitroreductases. During its anaerobic nitro reduction, primarily in the hepatic microsomal fraction, BNZ generates reactive metabolites that bind to the host’s DNA, proteins, and lipids. The nitro reduction also occurs in fecal matter, with an intensity that
  • proteins, and prematurely release their cargos; also, they are phagocytosed by circulating monocytes or tissue macrophages to be degraded. This gives rise to the emergence of new modes of toxicity, including hemolysis, inflammation, oxidative stress, and impaired lysosomal or mitochondrial function. In the
PDF
Album
Review
Published 27 Mar 2024
Graphical Abstract
  • protein corona. The formation of a protein corona on the surface of NPs, which influences the interaction with cell membranes or proteins, is also associated with zeta potential and surface charge. Very limited studies have reported the influence of zeta potential, surface charge, hydrophobicity, and
  • enhance the catalytic activity of Fenton/Fenton-like reactions, but can also result in cellular damage [16]. ROS can break down the basic components of the cell, including DNA, proteins, and lipids. ROS can cause double-strand breaks in DNA by converting guanine to 8-oxoguanine. This conversion can lead
  • to mispairing with adenine, resulting in transversion mutations. Proteins can also be damaged when their amino acid side chains are oxidized by ROS. Exposure of lipids to ROS can result in lipid peroxidation, which can cause cell damage and generate reactive by-products that further damage the cell
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • modelling of the interaction between various surfaces, that is (100), (110), and (111), of fcc aluminum with the most abundant milk proteins and lactose. Our approach combines atomistic molecular dynamics, a coarse-grained model of protein adsorption, and kinetic Monte Carlo simulations to predict the
  • protein corona composition in the deposited milk layer on aluminum surfaces. We consider a simplified model of milk, which is composed of the six most abundant milk proteins found in natural cow milk and lactose, which is the most abundant sugar found in dairy. Through our study, we ranked selected
  • proteins and lactose adsorption affinities based on their corresponding interaction strength with aluminum surfaces and predicted the content of the naturally forming biomolecular corona. Our comprehensive investigation sheds light on the implications of aluminum in food processing and packaging
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • DLS and PDI increased to approx. 280 nm and 0.24, respectively. The NPs were still well dispersed in cell culture media; however, the size increase suggested the adsorption of FBS proteins onto the NPs. The SEM results (Figure 1B) showed the actual size of the nanoparticles, which had a round shape of
  • -life. When NPs are administered, they come into contact with blood cells and plasma proteins, which may cause adsorption or opsonization by serum proteins [35]. However, these proteins will have a reduced probability of interacting with our negatively charged nanoparticles, as most proteins are
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • were purchased from Sigma-Aldrich. Vinyltriethoxysilanes, tert-butyl hydroperoxide (TBHPO), and urea were purchased from Tokyo Chemical Industry, Japan. Removal of proteins from natural rubber According to the method reported in [24], deproteinization of HANR was carried out using urea as a denaturing
PDF
Album
Full Research Paper
Published 05 Feb 2024
Other Beilstein-Institut Open Science Activities