Search results

Search for "vesicles" in Full Text gives 91 result(s) in Beilstein Journal of Nanotechnology.

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • vesicles, and phagosomes could be employed as a gateway for endocytosis-mediated transcellular transport across the MBB [19]. Since there is no lymphatic drainage, the BM tissue relies on these pathways for bidirectional transport of a variety of molecules across the MBB. The capability of the sinusoidal
  • NALM-6 cell membrane vesicles that were further decorated with aTGFβRII antibodies, attached via hypoxia-sensitive azobenzene linker. The membrane coating plays a dual role in the formulation. It guides the drug to the BM via receptor–ligand interaction between CXCR4 (a chemokine receptor expressed on
PDF
Album
Review
Published 29 Apr 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • through CavME or lipid rafts. Co-localization studies confirmed the entrapment of fluorescently labeled RITC-BSA-SO-MNPs in clathrin-coated vesicles in A549 cells stably expressing green fluorescent protein (GFP)-clathrin. The results indicate that tuning of the MNP surface chemistry can potentially
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • Osteoblasts are bone-mineralizing cells situated inside the matrix boundaries of the osteoid. They can release matrix vesicles containing calcium and phosphate, eventually leading to precipitation and growth of bone mineral [1][2]. They adhere to and spread on a wide spectrum of pristine and coated material
  • the initial phase of adhesion well before the release of matrix vesicles in the collagen matrix. Our results include characteristic sheet-like protrusions, so-called ruffles. Their appearance on the osteoblast cell rims mostly vanishes when a large adhesion area is established, resulting in a smooth
PDF
Album
Full Research Paper
Published 12 Mar 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • infection of approximately 1 (MOI 1) and an incubation time of 18 h. The surface of the infected cells is covered by a number of micrometer-sized vesicles and segments of cell membranes, which is a first indication that apoptosis occurred during viral replication. Regularly shaped particles below 100 nm
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
PDF
Album
Review
Published 04 Jan 2021

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • . The physiological mechanism of macropinocytosis has been recently elucidated [28][29]. In previous reports, macropinosomes have been considered to be inherently leaky vesicles comparable to other types of endosomes [21][30][31][32]. In this study, since lysosomal degradation of pDNA was low, the
PDF
Album
Full Research Paper
Published 05 Nov 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • endocytosis is initiated. The receptor–ligand complex is invaginated, which leads to the formation of intracellular transport vesicles. The vesicles are then sorted and the ones sorted for exocytosis cross the cell to release the ligand to its basolateral side. The receptor is then recycled [41]. Some of the
  • endocytic vesicles have been identified and described in the brain endothelial cells: clathrin-coated pits, caveolae and macropinocytosis vesicles. Clathrin-coated pits are involved in most of the internalization processes mediated by receptors such as TfR or insulin receptors [39][40]. After endocytosis
  • , the vesicles converge in the early endosome network, which functions as an intracellular sorting station. From there, cargo can be transported via sorting tubules to the basolateral side of the cells for exocytosis. Cargo can also stay in the early endosomes, which can mature in late endosomes and
PDF
Album
Review
Published 04 Jun 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • scale) and the mass producibility. In [6], we presented a detailed simulation study of the trapping capabilities for extracellular vesicles (EVs) of the dual-waveguide trap we used in [5]. EVs are small cell-derived particles (diameter ranging from 30 to 1000 nm) and are important as potential
  • powers of several milliwatts. Thus, we have quite some power left for making the transition to stable trapping of, for example, bacteria, human cells or extracellular vesicles. The 16-waveguide device is the better choice in this respect, since Table 1 indicates that it clearly has a higher trap
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • 5 peptide grafted PGA [107]. The homogeneous adsorption of charged lipids such as dipalmitoyldiphosphatidic acid (DPPA), dipalmitoyldiphosphatidylcholine (DPPC) and sphingosine over a capsule surface has been achieved in two ways: 1) the adsorption of lipid vesicles via electrostatic interactions
PDF
Album
Review
Published 27 Mar 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • required for uptake to occur are (Figure 3): a specific lipid composition of the cell membrane at the site of endocytosis (such as the presence of sphingolipids or cholesterol) [70][72][74][75][76], cargo recognition at the cell membrane (receptor-mediated or not) and capture (into coated vesicles or
PDF
Album
Review
Published 14 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • micelles or vesicles. The driving forces of this assembly are a loss of entropy during the self-assembly and different interactions acting on the monomer units of the polymer. Whereas polymer/polymer interactions are favored for the hydrophobic block, interactions between the hydrophobic block and water
  • , part 1 of this review showed the large variety of polymers used for PDT, going from aliphatic polyesters, polyacrylates to peptides or polysaccharides. The chemical structure will influence the crystallinity of the vector, its morphology (micelles, vesicles, or worm-like micelles), its stability ((bio
  • includes both the assessment of the shape and the difference between micelles and vesicles, both being spherical but, respectively, hydrophobic or hydrophilic at their core. This is very rapidly linked to the vector size, since micelles will exhibit a typical size of 10–30 nm, vesicles will be typically
PDF
Album
Review
Published 15 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • beacon) state to an open (A-motif) state in a pH-responsive manner within artificial vesicles and living cells. The DNA device was made up of 24 nucleobases, of which 12 adenine nucleobases were present within the loop region, and a closed molecular beacon structure was formed via two stretches of five
  • altered the FRET response, which was exploited for sensing of acidic pH (3–5.5) with a low step size (0.2–0.3) within synthetic vesicles that mimicked the intracellular environment. The in cellulo study in HeLa cells demonstrated the efficient cellular uptake of the DNA device without the need for a
  • data (Figure 8c) showed the movement of ions through the lipid–nanopore interface via the formation of a toroidal pore. The binding of porphyrin-tethered nanopores with giant unilamellar vesicles was analyzed by confocal microscopy (Figure 8d). The inherent fluorescent signal of porphyrin showed their
PDF
Album
Review
Published 09 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • of integral membrane protein pumps and channels. Macromolecules, however, require a different machinery in order to traverse the cellular membrane, which usually needs energy. Endocytosis is the active process in which macromolecules are carried into the cell in vesicles or vacuoles pinched-off of
  • involves an actin-driven membrane protrusion that results in an increase in fluid-phase uptake [61]. These protrusions do not ‘envelop’ a ligand-coated particle, but instead they collapse onto and fuse with the plasma membrane to generate large endocytic vesicles called macropinosomes [52]. Although
  • rim transforms into an hourglass-like membrane neck. Eventually, the neck undergoes fission [79]. For this step, dynamin, a kind of GTPase, is required. In subsequent steps, the released clathrin-coated vesicles (CCVs) are rapidly uncoated and delivered to early endosomes, which mature to late
PDF
Album
Review
Published 09 Jan 2020

The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency

  • Arianna Gennari,
  • Julio M. Rios de la Rosa,
  • Erwin Hohn,
  • Maria Pelliccia,
  • Enrique Lallana,
  • Roberto Donno,
  • Annalisa Tirella and
  • Nicola Tirelli

Beilstein J. Nanotechnol. 2019, 10, 2594–2608, doi:10.3762/bjnano.10.250

Graphical Abstract
  • for a hard, uniform sphere, 1.0 for vesicles with thin walls (hollow spheres), close to 1.5 for random polymer coil conformations [23][24]. Fractal dimension (D). When applied to particulates, the fractal geometry analysis is another important morphological indicator. For example, aggregation of
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2019

Bombesin receptor-targeted liposomes for enhanced delivery to lung cancer cells

  • Mohammad J. Akbar,
  • Pâmela C. Lukasewicz Ferreira,
  • Melania Giorgetti,
  • Leanne Stokes and
  • Christopher J. Morris

Beilstein J. Nanotechnol. 2019, 10, 2553–2562, doi:10.3762/bjnano.10.246

Graphical Abstract
  • formulations were prepared using the thin-film technique to yield small and monodisperse vesicles as judged by dynamic light scattering (DLS) analysis (Table 1). The colloidal properties of both liposomal formulations were highly similar in terms of size, polydispersity and zeta potential and consistent with
  • those reported for other pegylated liposomes by others [27]. The vesicles were colloidally stable in PBS over 72 h at temperatures of 4, 25 and 37 °C with no significant changes in size, PDI or zeta potential observed (Figure 3a,b). It was noted that the diameter of both liposome formulations was larger
  • than the 50 nm pore diameter of the terminal extrusion membrane. This is likely due to the deformation of the vesicles under pressure during extrusion and subsequent expansion after emergence from the pore. Commercial realisation of targeted nanomedicines is contingent upon the development of platforms
PDF
Album
Full Research Paper
Published 19 Dec 2019

Small protein sequences can induce cellular uptake of complex nanohybrids

  • Jan-Philip Merkl,
  • Malak Safi,
  • Christian Schmidtke,
  • Fadi Aldeek,
  • Johannes Ostermann,
  • Tatiana Domitrovic,
  • Sebastian Gärtner,
  • John E. Johnson,
  • Horst Weller and
  • Hedi Mattoussi

Beilstein J. Nanotechnol. 2019, 10, 2477–2482, doi:10.3762/bjnano.10.238

Graphical Abstract
  • reported that a sizable fraction of the delivered nanoparticles can end up in the cytoplasm, by either circumventing endocytosis through the use of virus-derived peptide sequences, or non-disruptively penetrating the cellular membranes [13]. Escape from endosomal vesicles of once endocytosed nanoparticles
  • that distribution of the internalized nanohybrids (yellow staining) is distinct from that of the endosomes (counterstained in red). This provides further confirmation of the data shown in Figure 1E, demonstrating that the nanohybrids are not trapped within endocytic vesicles. The respective signals
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials

  • Stefania Ordanini,
  • Wanda Celentano,
  • Anna Bernardi and
  • Francesco Cellesi

Beilstein J. Nanotechnol. 2019, 10, 2192–2206, doi:10.3762/bjnano.10.212

Graphical Abstract
  • aggregates (e.g., micelles and vesicles) above their critical aggregation concentration (CAC). The resulting self-assembled nanoparticles can act as drug carriers and delivery systems, being able to accommodate a hydrophobic drug within their hydrophobic core [22], or chemically bind bioactive agents [23][24
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells

  • Liang Xu,
  • Dekang Xu,
  • Ziying Li,
  • Yu Gao and
  • Haijun Chen

Beilstein J. Nanotechnol. 2019, 10, 1933–1942, doi:10.3762/bjnano.10.189

Graphical Abstract
  • ingredients could undergo self-assembly into stable vesicles in aqueous solution, which could act as a vehicle to facilitate membrane transport [29]. Compared to liposomes, phytosomes can load more drug molecules, and showed enhanced stability in the lyophilization and reconstitution processes prior to use
  • film. Before hydration, the lipid film was dried in a vacuum drying chamber at 27 °C for 12 h. The hydrated multilamellar vesicles were sonicated by a sonicator for 20 min. Blank lipid nanoparticles (P) were also prepared with the same process without adding Di or P2. Characterization of phytosomes
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Lipid nanostructures for antioxidant delivery: a comparative preformulation study

  • Elisabetta Esposito,
  • Maddalena Sguizzato,
  • Markus Drechsler,
  • Paolo Mariani,
  • Federica Carducci,
  • Claudio Nastruzzi,
  • Giuseppe Valacchi and
  • Rita Cortesi

Beilstein J. Nanotechnol. 2019, 10, 1789–1801, doi:10.3762/bjnano.10.174

Graphical Abstract
  • triangular structures were observed. At last, in the case of suppocire NLCs, besides the presence of some irregular structures (Figure 2F), spherical structures were detected (inset of Figure 2F), resembling vesicles rather than to solid particles. The inner morphology of the NLCs was further characterized
  • an ordered structural organization inside the NLC, while suppocire is not able to preserve such an organization. According to the cryo-TEM findings, vesicles rather than nanoparticles probably form in this condition. The analysis of the position of the peaks observed in tristearin-based NLCs allowed
  • values were found in the case of NLC S10-TOC and NLC T10-RA. In the case of suppocire, TOC EE values decreased from 88 to 60% by doubling the lipid phase concentration, suggesting that the presence of vesicles instead of nanoparticles prevented high loading of the antioxidant within their structure
PDF
Album
Full Research Paper
Published 29 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • -like cells in membrane-surrounded vesicles and the cytoplasm. Studies in organotypic brain slices revealed that NPs were only taken up by microglial cells but not by astrocytes or neurons [9]. NPs were taken up in a time- and concentration-dependent manner and were found in the endoplasmic reticulum
  • these three NP types. Both PLLA- and PCL-NPs were taken up to a high extent after 2 and 24 h of exposure, respectively. They tended to form clusters and were detected freely in the cytosol or in membrane-bound vesicles (Figure 2A,D and Figure 2B,E). On the other hand, Au-NPs could not be found inside
  • , B, C) and higher magnification (D, E, F); analyzed by TEM. PLLA- and PCL-NPs were found in clusters inside the cells (arrows) (A, B; scale bar: 5 µm) and were present freely in the cytoplasm (arrows) or in membrane-bound vesicles (arrow head) (D, E; scale bar: 1 µm). Single Au-NPs were taken up by
PDF
Album
Full Research Paper
Published 25 Apr 2019

The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

  • Jan Hynek,
  • Sebastian Jurík,
  • Martina Koncošová,
  • Jaroslav Zelenka,
  • Ivana Křížová,
  • Tomáš Ruml,
  • Kaplan Kirakci,
  • Ivo Jakubec,
  • František Kovanda,
  • Kamil Lang and
  • Jan Demel

Beilstein J. Nanotechnol. 2018, 9, 2960–2967, doi:10.3762/bjnano.9.275

Graphical Abstract
  • using confocal microscopy. Figure 7 clearly shows that the nanoparticles accumulate in intracellular vesicles, which strongly co-localize with the fluorescent marker of lysosomes. This is similar to the results of a previous study performed with PCN-222 nanoparticles [22]. Toxicity and phototoxicity
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • track the morphological changes occurring in the cells after treatment with CaP@5-FU NPs in a time-dependent manner. Hoechst 33342 can effectively stain the nucleic acid and specifically identify changes in the nucleus, whereas rhodamine B stains the cytoplasmic vesicles uniformly, enabling the
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • micelles, reverse micelles as well as worm-like structures, lamellar sheets, and vesicles (Figure 5). As mentioned previously, the thermodynamic incompatibility between the blocks forming the polymer chains is the driving force behind the formation of such nanostructures [4][35]. In this context, this
PDF
Album
Review
Published 29 Aug 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • adhesive vesicles was found to react with the lectin PNA, indicating the presence of galactose(ß 1-3) N-acetylgalactosamine [44]. In contrast to A. gibbosa, galactose(ß 1-3) N-acetylgalactosamine residues were also detected in M. lignano footprints (Lengerer pers. observation). Many known proteins involved
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018
Other Beilstein-Institut Open Science Activities