Search results

Search for "efficiency" in Full Text gives 937 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • such as: loss of stability, low efficiency in crossing biological barriers, inadequate efficacy in reaching target active molecules, and poor biodistribution [13][14]. Nanocarriers are employed to transport raw materials, which can be vesicles or solid nanoparticles [15]. Despite the significant
  • this context, biomimetic strategies using natural components emerge as revolutionary tools to overcome these challenges. The utilization of cellular components or parts thereof, such as macromolecules or membranes, can enhance drug delivery and therapeutic efficiency in the human body, representing a
  • voltage and exposure time, can be optimized to improve efficiency. Though costly, this method is suitable for industrial applications [34][45]. Another strategy exploits electrostatic charges of nanocarriers and membrane vesicles. Opposite charges (negative for vesicles and positive for carriers) foster
PDF
Album
Perspective
Published 16 Dec 2024

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • interdisciplinary approach is to integrate advances in biotechnology, nanomaterials, biomedical robotics, and genetic engineering into the broader field of nanomedicine. On a larger scale, the application of nanotechnology in medicine enhances efficiency, accelerates processes, and improves functional performance
  • activity, membrane leakage, and morphological changes. Toxic NPs can adversely affect cell viability, proliferation rate, and metabolic activity; also, they can reduce the therapeutic efficiency of the treatment [55]. The toxicity of NPs on biological entities fundamentally depends on the characteristics
PDF
Album
Full Research Paper
Published 11 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • intensity. The catalytic efficiency was quantified using the following equation: where C0 represents the initial concentration at t = 0 and Ct denotes the concentration at time t. Results and Discussion Synthesis of ʟ-carnosine-capped tunable silver nanoparticles ʟ-car-AgNPs were synthesized using a wet
  • -AgNP1 led to the degradation of 0.25 mM P-NP within 90 s of the reaction, achieving a degradation efficiency of 95.5% (Figure 9a). In comparison, ʟ-car-AgNP2, ʟ-car-AgNP3, ʟ-car-AgNP4, and ʟ-car-AgNP5 achieved complete P-NP degradation within 100, 160, 140, and 220 s, respectively, with catalytic
  • -AgNP4, ʟ-car-AgNP3, and ʟ-car-AgNP2 are nearly the same, but the lower rate constant in case of AgNP5 might be due to the formation of larger aggregates, which was confirmed by optical spectroscopy and TEM analysis. The high efficiency of AgNP2 might be due to its quasi-spherical shape. The catalytic
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Ultrablack color in velvet ant cuticle

  • Vinicius Marques Lopez,
  • Wencke Krings,
  • Juliana Reis Machado,
  • Stanislav Gorb and
  • Rhainer Guillermo-Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1554–1565, doi:10.3762/bjnano.15.122

Graphical Abstract
  • distribution and organization of such microstructures influence the absorption efficiency and potential adaptive significance of ultrablack coloration in different ecological contexts. The role of ultrablack colors in nature is still a topic of debate, with limited evidence regarding the selective pressures
  • pigment absorption that results in these remarkably absorptive surface. Especially, this kind of wasp-inspired technology may have its application in increasing efficiency of solar panels [20]. Further research is needed to uncover the mechanisms and functional roles of ultrablack coloration in velvet
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2024

The round-robin approach applied to nanoinformatics: consensus prediction of nanomaterials zeta potential

  • Dimitra-Danai Varsou,
  • Arkaprava Banerjee,
  • Joyita Roy,
  • Kunal Roy,
  • Giannis Savvas,
  • Haralambos Sarimveis,
  • Ewelina Wyrzykowska,
  • Mateusz Balicki,
  • Tomasz Puzyn,
  • Georgia Melagraki,
  • Iseult Lynch and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 1536–1553, doi:10.3762/bjnano.15.121

Graphical Abstract
  • possessing modest individual predictive prowess. However, when integrated into an ensemble, they collectively augment the predictive efficiency of the model. A notable distinction between the random forest algorithm and AdaBoost lies in their operational frameworks. In the random forest, individual
  • -across and QSPR, has been recently introduced and applied to the prediction of NM cytotoxicity [44], power conversion efficiency of organic dyes in dye-sensitized solar cells [45][46], detonation heat for nitrogen containing compounds [47], and to the prediction of surface area of perovskite materials
  • materials being studied, (ii) a random forest model, and (iii) an AdaBoost regression model, both of which stand out for their speed and computational efficiency. Last, two quantitative read-across structure-property relationship (q-RASPR) models were included that combine the advantages of read-across and
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2024

Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies

  • Fabio Le Piane,
  • Mario Vozza,
  • Matteo Baldoni and
  • Francesco Mercuri

Beilstein J. Nanotechnol. 2024, 15, 1498–1521, doi:10.3762/bjnano.15.119

Graphical Abstract
  • efficiency of materials research. The integration of digital technologies into materials science has, thus, opened up exciting new possibilities for materials design, discovery, and innovation [14]. New, fully digitalized research directions for materials development are therefore emerging at the convergence
  • computational challenges with greater speed and efficiency. The availability of powerful processors, increased memory capacity, and enhanced parallel computing architectures has significantly accelerated materials simulations and modelling [17]. In parallel, software technologies have undergone remarkable
  • in materials development. Beside the implementation of automation and robotics in the development, synthesis, and characterization of materials, automation in modelling has emerged as a powerful approach to streamline and enhance the efficiency of computational studies. By leveraging digital
PDF
Album
Perspective
Published 27 Nov 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • . We discuss the obstacles in the conventional delivery of phytochemicals, the fundamental architecture of PLHNPs, and the types of PLHNPs, highlighting their ability to improve encapsulation efficiency, stability, and controlled release of the encapsulated phytochemicals. In addition, the surface
  • polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and chitosan (CHS), provides structural integrity, controlled release properties, and protection against premature degradation [14][15]. This hybrid structure improves the encapsulation efficiency of phytochemicals/drugs
  • include their small particle size, high encapsulation efficiency, enhanced stability, and improved dissolution in harsh gastrointestinal (GI) fluids. Following oral administration, PLHNPs demonstrate superior intestinal absorption and bioavailability, attributed to their enhanced stability and dissolution
PDF
Album
Review
Published 22 Nov 2024

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • atoms before the residual metal atoms are ultimately removed by physical sputtering, is analogous to the ion-induced reactions with adsorbed Ru(CO)4I2 [23]. In the present study, the relative efficiency of Pt atom sputtering is expected to be greatest for the heavier Ar+ ions [37][41]. Indeed, other
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • to capture a wider range of sunlight compared to traditional materials, potentially leading to higher solar energy conversion efficiency [43]. Bae et al. focussed on lead sulfide (PbS) CQDs solar cells where they addressed the major challenge of charge carrier recombination which limits the
  • resonant wavelength of the DBR can be selectively enhanced without increasing the CQD film thickness, thereby overcoming the inherent tradeoff in these devices. The combination of FP resonance and DBR increases the power conversion efficiency (PCE) of PbS CQD solar cells by 54% and enables a very thin PbS
  • layer to absorb four times more near-infrared light [43]. Flip-chip micro light-emitting diodes (micro-LEDs) are a revolutionary technology with the potential to create next-generation HDR displays due to their tiny size, exceptional brightness, wide color gamut, and energy efficiency [44][45][46
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • . While the systemic route of administration with the combination of drug delivery systems (DDSs) to cross the BBB has been promising, the efficiency is often not yet satisfactory [17]. Another noninvasive technique, nose-to-brain delivery or nasal-to-brain delivery (N2B delivery), in contrast, bypasses
  • opportunity to modify the release profile of the drugs, enhance targeting efficiency, and improve nasal permeation during intranasal administration [21][22][23][24]. In general, the encapsulation of active pharmaceutical ingredients (APIs) into mucoadhesive DDSs can mitigate rapid mucociliary clearance [25
  • showed higher encapsulation efficiency for the positively charged ghrelin at pH 7.4, indicating that the choice of the anionic/cationic liposomes should be based on the desired application as well as the encapsulated substance. Moreover, a chitosan chloride coating increased mucin adsorption by
PDF
Album
Review
Published 12 Nov 2024

Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe2

  • Guixian Liu,
  • Yufan Wang,
  • Zhoujuan Xu,
  • Zhouxiaosong Zeng,
  • Lanyu Huang,
  • Cuihuan Ge and
  • Xiao Wang

Beilstein J. Nanotechnol. 2024, 15, 1362–1368, doi:10.3762/bjnano.15.109

Graphical Abstract
  • .15.109 Abstract Constructing van der Waals materials with spontaneous out-of-plane polarization through interlayer engineering expands the family of two-dimensional ferroelectrics and provides an excellent platform for enhancing the photoelectric conversion efficiency. Here, we reveal the effect of
  • lead to a high-efficiency photoelectric conversion that has the potential to surpasses the Shockley–Queisser limit [24][31][32][33][34]. In this regard, constructing 2D vdW semiconductors with OOP polarization and moderate bandgap holds great promise for high-performance self-powered BPVE devices. More
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • materials and devices that replicate the efficiency and functionality of insect body structures, driving progress in medical technology, robotics, environmental monitoring, and beyond. Keywords: arthropods; bio-inspired surfaces; bioengineering; cuticle; nanoscale structures; Introduction The body
  • , scientists and engineers can develop innovative materials and devices that mirror the efficiency and functionality of Hymenopteran anatomy. Here we describe the structural adaptations on the surfaces of the body of Hymenoptera (Figure 2) with potential biomimetic applications. By analyzing their unique
  • of some species reduce friction and wear, inspiring the development of low-friction materials and coatings. By mimicking these natural textures, it is possible to create synthetic materials that exhibit similar friction-reducing properties, leading to significant advancements in mechanical efficiency
PDF
Album
Review
Published 05 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • , metal composition, centrifugation, and NaOH amount, were investigated for their impact on the performance of CTAB-capped nanoparticles in heavy metal detection and 4-NP degradation. CTAB-Au nanospheres demonstrated limited heavy metal ion detection capability but exhibited remarkable efficiency in
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • photocatalyst for organic pollutant degradation but also underscore the importance of optimizing synthesis methods to enhance efficiency and reduce energy consumption. These advancements are crucial for addressing pressing environmental challenges and pave the way for more sustainable approaches to water
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • particle removal efficiency in intact insects and in insects with ablated grooming devices. The grooming devices are constituted of long setae from which a concave cuticular lamina develops towards the medial side of the leg. Each seta shows a material gradient of resilin from its basal to the distal
  • efficiency of the grooming activity have been largely investigated in old and recent papers [26][27]. The antenna cleaner is usually formed from a modified fore tibia, tibial spurs, and/or fore basitarsus, but its morphology varies greatly among groups [20]. In Hemiptera, antennal grooming involves scraping
  • confocal laser scanning microscopy (CLSM). The eye and antennal grooming behavior of the damselfly Ischnura elegans (Vander Linden, 1820) adults (Odonata, Coenagrionidae) was observed and analyzed to evaluate the particle removal efficiency in intact and ablated insects. Material and Methods Insects
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • exhibit heightened efficacy and reduced toxicity for medical purposes. Keywords: colloidal stability; complex media; functionalized nanoparticles; hemolysis; targeting tumor; Introduction In recent years, there has been a growing search for developing high-efficiency nanomedicines for cancer treatment
  • biological identity of these particles, impairing their therapeutic efficiency [12][13][14][15]. Proteins and other biomolecules can be adsorbed on the surface of NPs (protein corona formation), masking their original functionality and hiding their target ability [16][17][18]. Protein corona can further lead
  • to the formation of aggregates of NPs and activation of unplanned biological pathways (e.g., the complement system) [16][17][18]. The factors mentioned above hamper the biodistribution of nanomedicines and their targeting efficiency, therefore causing adverse effects. Multiple functionalization
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • particular, have demonstrated significant control over the nucleation and growth of metallic nanoparticles. Utilizing polysaccharide-mediated procedures for AuNP synthesis offers several advantages over conventional methods, including cost-effectiveness, energy efficiency, low toxicity, and eco-friendliness
  • metallic ions onto the nanogel and the subsequent reduction [22][23]. In recent studies, in situ reduction of metal nanoparticles (MNPs) has been explored to enhance synthetic efficiency and streamline procedures by employing disaccharides such as lactose [24][25]. However, the potential of monosaccharides
  • resulting nanocomposites were characterized using various analytical techniques and demonstrated efficacy in the catalytic reduction of nitrophenols and methyl orange. A comparative analysis of the reduction processes was carried out to confirm the enhanced efficiency of the nanocomposites. Experimental
PDF
Album
Full Research Paper
Published 04 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • % ID/g, while PEG-coated AuNCs displayed even higher passive tumor uptake efficiency of ≈8% ID/g owing to their longer blood retention time [77]. Besides achieving decent tumor uptake levels in some cases, usNPs exhibit easier penetration and diffusion through the dense tumor microenvironment relative
PDF
Album
Review
Published 30 Sep 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • . The encapsulation efficiency was determined using Equation 1: As expected, DOX was successfully encapsulated in the SNPs. The combination of temperature-sensitive pNIPA and pH-sensitive VIm was investigated at two temperatures (25 and 41 °C) and two pH values (pH 6.0 and 7.4). The total release of DOX
  • of treatment, their presence in the liver was lower than that of a Doxil mimic. DOX polymersomes showed better efficiency than the Doxil mimic against tumor after one injection at lower doses. Both formulations induced the similar changes in body and in blood of mice as follows from histological and
PDF
Album
Full Research Paper
Published 26 Sep 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • coefficient and a high dielectric constant inspired the design of a monolayer Ge2Se2-based solar cell, exhibiting a high open circuit voltage of Voc = 1.11 V, a fill factor of 87.66%, and more than 28% power conversion efficiency at room temperature. Our findings advocate monolayer Ge2Se2 for various
  • in the last few decades has led to many successful breakthroughs in terms of the stability, efficiency, and cost of PV technology. In the past few decades, perovskite solar cells (PSCs) have emerged as a groundbreaking technology in the field of renewable energy because of their remarkable efficiency
  • all these cases, the transport layer thicknesses are taken as sufficiently high. During the last few decades, researchers claimed that ETLs/HTLs of two-dimensional materials could achieve high power conversion efficiency (PCE) and optimum device performance [18][19]. The key features of the 2D
PDF
Album
Full Research Paper
Published 11 Sep 2024

Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles

  • Supratik Kar and
  • Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152, doi:10.3762/bjnano.15.93

Graphical Abstract
  • the outer electrons in larger atoms, which might reduce the efficiency of electronic interactions essential for binding or catalytic activity. Our nano-QSTR model suggests that the enzymatic activity of ZHE1 in zebrafish is influenced negatively by the total electronegativity of metals and the atomic
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • of TiO2 on p-type SiNWs. The TiO2/SiNWs heterostructure exhibited an outstanding OCM performance under simulated solar light irradiation compared to the single components. This enhanced efficiency was attributed to the intrinsic electrical field formed between n-type TiO2 and p-type SiNWs, which
  • because of its high stability, good dispersibility, and narrow energy bandgap. However, pristine TiO2 shows only low photocatalytic efficiency because of the high recombination rate between holes and electrons and the low visible-light harvesting ability [20][21][22]. The rapid recombination of charge
  • carriers prior to their participation in reactions significantly reduces the efficiency of methane oxidation reactions [23][24]. To address these issues of TiO2 nanomaterials, many scientists have developed TiO2-based nanostructure composites as advanced photocatalysts [25][26][27][28][29][30]. The
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • activated HSCs in liver fibrosis resulted in a loss of the fenestrae, hindering plasma to reach the perisinusoidal space [43]. As the disease progresses, the reduced blood flow and the blockage of portal flow through the liver could diminish the efficiency of drug delivery. Nanoencapsulation as passive
  • the FDA up to 2019 [46]. They consist of PLGA microparticles, solid implants, and in situ gels; none of them is a PLGA NP formulation. This fact indicates that there are some challenges, including poor drug entrapment efficiency and drug release kinetics from PLGA nanoformulations [47]. Regarding
  • into the solid lipid NPs using the microemulsion-probe ultrasound method, while mannose 6-phosphate was conjugated to albumin. The mannose 6-phosphate-conjugated albumin was then decorated onto the surface of matrine-loaded solid lipid NPs, and its HSC-targeting efficiency was evaluated in vitro and in
PDF
Album
Review
Published 23 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • body, increasing the delivery efficiency of drugs [41]. In addition to drug delivery, sensing technologies are also of great importance in healthcare. Sensing technologies enable healthcare professionals to monitor patients’ health conditions, track the effectiveness of treatments, and detect any
  • evaporation, and nanoprecipitation. Advances in alginate-based nanoparticle design have resulted in increased drug encapsulation efficiency, allowing for larger drug payloads within the nanoparticles. Biopolymeric nanoparticles have become the most commonly used nanoparticle DDSs in recent years. The
  • mucoadhesive DDSs for cervical cancer [77]. The BCHI/ALG NPs were less than 390 nm in size and showed a drug encapsulation efficiency of 98.1–99.8%, and a drug loading capacity of 326.9–332.7 g/mg. Surprisingly, boronated chitosan-loaded alginate demonstrated a greater mucoadhesive capacity compared to CHI/ALG
PDF
Album
Review
Published 22 Aug 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • detect chemical warfare agent (CWA) simulants such as methyl salicylate (a CWA simulant for sulfur mustard) and dimethyl methyl phosphonate (has some structural similarities to the G-series nerve agents) at different laser excitations (325, 532, and 633 nm). A notably higher SERS efficiency for CWA
  • media [27][28][29]. The SERS substrate efficiency mainly depends on the material, size, and shape of the NPs. Recent terrorist activities involving explosives and chemical warfare agents highlight the urgent need for sensitive and selective chemical sensors. These sensors must be using low power and be
  • efficiency and yield of the LASiS process [4][50]. The study reported by Shukri et al. [51] pointed out a size reduction in Au NPs from 19 to 12 nm by decreasing the input laser wavelengths, changing from 1064 to 532 nm in DW. Solati et al. [52] observed a significant increase in the mean size of Ag NPs from
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024
Other Beilstein-Institut Open Science Activities