Search results

Search for "flexible" in Full Text gives 331 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • bind to other molecules with high affinity and specificity. Aptamers are comparable to antibodies in their applications, yet, they offer several advantages, including higher temperature stability, fast chemical synthesis, easy labeling, versatile chemical modification, flexible structure, and
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios

  • Jiyu Sun,
  • Pengpeng Li,
  • Yongwei Yan,
  • Fa Song,
  • Nuo Xu and
  • Zhijun Zhang

Beilstein J. Nanotechnol. 2022, 13, 845–856, doi:10.3762/bjnano.13.75

Graphical Abstract
  • that their flapping lifts were different because of the different sizes and shapes of the wings [20]. Additionally, the elasticity of insect wings also has an impact on the aerodynamic characteristics. By studying the flexible deformations and aerodynamic characteristics of cicada wings during flapping
  • similar. Especially, at low wind speeds, a higher flapping frequency yields a better lift-to-drag ratio. A bionic flexible FWMAV was tested in a wind tunnel to explore the effects of different flapping frequencies and aspect ratios on the aerodynamic performance. The flapping frequency played a crucial
PDF
Album
Full Research Paper
Published 26 Aug 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • , on the one hand, and their non-toxicity and low vapor pressure, on the other hand. Room-temperature-liquid Ga-based alloys are considered for direct writing and printing stretchable and flexible electronic devices, such as antennas or wires [5][6][7]. Such applications and the related processing of
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • ., Cu or Ni) to the desired target substrate (e.g., SiO2/Si, glass, or flexible polymers) often introduces inconsistencies among devices [10]. Various approaches have been developed to address this issue and establish a reproducible transfer process [11][12][13][14][15][16][17]. Among the many, the poly
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • nitrogen dioxide containing a flexible PANI thin film sensing area deposited on interleaved electrodes were produced by Posta et al. [13] and by Kroutil and co-workers [7]. In the experiments of Posta and Kroutil, the gas sensors for ammonia and nitrogen dioxide were exposed for 20 min to synthetic air
PDF
Album
Full Research Paper
Published 26 Jul 2022

A superconducting adiabatic neuron in a quantum regime

  • Marina V. Bastrakova,
  • Dmitrii S. Pashin,
  • Dmitriy A. Rybin,
  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Anastasiya A. Gorchavkina and
  • Arkady M. Satanin

Beilstein J. Nanotechnol. 2022, 13, 653–665, doi:10.3762/bjnano.13.57

Graphical Abstract
  • software-defined radio [14][15] implying the change of signal frequency and modulation. An efficient architecture of a flexible hybrid system requires a close spatial arrangement of the classical ANN with its control quantum co-processor, see Figure 1a. Superconductor technology is a promising platform for
  • master equation. (a) Sketch of a flexible hybrid system consisting of a classical ANN having its configuration (synaptic weights) dynamically adjusted by a quantum co-processor. (b) Schematic representation of the SQ neuron providing nonlinear magnetic flux transformation. The energy spectrum and
PDF
Album
Full Research Paper
Published 14 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • MoS2/FTO. The resulting DSSCs showed a PCE of 7.16%, similar to that of a Pt/FTO CE (7.48%). The MoS2 film was amorphous and contained agglomerated clusters of nanoparticles [22]. Recently, Gurulakshmi et al. reported on DSSCs using a flexible CE fabricated by electrodeposition of a MoS2 thin film onto
  • a conductive FTO/PET substrate. The PCE of this flexible DSSCs reached 4.84%. The MoS2 film was composed of sheets with a length of about 6 µm and a thickness of about 500 nm [23]. Another report by Chang et al. mentioned the change in morphology of MoS2 from sphere-like shapes with large grain size
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • clear, it was possible to insert the master structure for mold development (Supporting Information File 1, Figure S1). After 24 h, after the careful removal of the cartridge, a flexible mold was obtained, with intact and visible micropores, both on its surface and on its extension. Fabrication of
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • their interaction with skin cells is high. They are unique systems that can be easily shaped by the presence of ethanol in their structures, and their vesicle membranes become very flexible such that they can be transported through pores much smaller than their own diameters [20][21]. In addition, the
PDF
Album
Full Research Paper
Published 31 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • (nanopowder), PANI/WO3 (nanotubes), PANI/In2O3, PANI/C60 (fullerene), PANI/nanocrystalline diamond (NCD), and PANI/BaTiO3, deposited on a flexible sensor array platform with a new design. Seven different nanocomposite sensing layers deposited on the array were exposed to six different gases (ammonia, carbon
  • increasing interpretability. We apply PCA and LDA as input data for five machine learning algorithms with a 10-fold cross-validation method. The preprocessing stage was implemented by applying PCA and LDA on the extracted dataset [14][15]. Five different kinds of flexible pattern recognition algorithms have
  • electrode systems was manufactured as a flexible printed circuit board (DuPont Pyralux AP8535 with 75 µm thickness, double-sided, copper-clad laminate in an all-polyimide composite of polyimide film bonded to copper foil). It contains the heating elements and the temperature sensors for the temperature
PDF
Album
Full Research Paper
Published 27 Apr 2022

Effect of sample treatment on the elastic modulus of locust cuticle obtained by nanoindentation

  • Chuchu Li,
  • Stanislav N. Gorb and
  • Hamed Rajabi

Beilstein J. Nanotechnol. 2022, 13, 404–410, doi:10.3762/bjnano.13.33

Graphical Abstract
  • : biomimetics; cuticle; locust; material properties; mechanical testing; nanoindentation; water content; Introduction Cuticle is a lightweight material that forms the whole exoskeleton of insects, from the flexible intersegmental membrane to the stiff jaws and claws. Cuticle of each insect body part has
PDF
Album
Full Research Paper
Published 22 Apr 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • Technology, Nanjing University of Posts and Telecommunications, Nanjing, China 10.3762/bjnano.13.32 Abstract The electrostatic pull-in effect is a common phenomenon and a key parameter in the design of microscale and nanoscale devices. Flexible electronic devices based on the pull-in effect have attracted
  • increasing attention due to their unique ductility. This review summarizes nanoelectromechanical switches made by flexible materials and classifies and discusses their applications in, among others, radio frequency systems, microfluidic systems, and electrostatic discharge protection. It is supposed to give
  • more and more difficult for traditional electronic devices made of rigid substrates to meet the needs of flexible and low-cost applications in complex environments. Flexible electronics have great potential for applications such as portable displays, electronic skin, and wearable healthcare. With the
PDF
Album
Review
Published 12 Apr 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • last couple of years. Textile-based sensors, being flexible, are easy to fit in a garment and create no barrier to the wearer. Nowadays, wearable sensors based on conductive threads and conductive polymers are capable of measuring vital signs of the human body [4][5]. Tognetti et al. [6] designed and
  • , which is capable of monitoring body angles. This sensor will be able to replace the battery being used in commonly available products and is more breathable, lightweight, and flexible. The developed sensor has been characterized through advanced techniques. The current density has been calculated and
PDF
Album
Full Research Paper
Published 07 Feb 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • hardness of 2H MoS2 are higher than those of 1T′ MoS2. The biggest difference can be found in the Young’s modulus. 2H MoS2 exhibits a Young’s modulus of 93 GPa, which is 12% higher than that of 1T′. All mechanical properties support that the 1T′ polytype is softer and more flexible than its 2H counterpart
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • flexible nanohybrid membrane of Pd NP-decorated polydopamine-SiO2/PVA, which can simultaneously remove organic dyes, chemicals, and oils [83]. (Figure 4 and Figure 5) Superhydrophilicity was found to be a synergistic effect of numerous hydroxy groups from SiO2 NPs and the nano/microscale surface roughness
PDF
Album
Review
Published 31 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • catalytic area, SnO2 is an emerging material for removing contaminants such as organic dyes, phenolic compounds, and volatile organic compounds (VOCs) due to strongly oxidizing properties thanks to flexible energy band structure, rich defects, good chemical, and high thermal stability, and easily controlled
PDF
Album
Review
Published 21 Jan 2022

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  • Rome, 00184 Rome, Italy Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy 10.3762/bjnano.12.93 Abstract In the last years flexible, low-cost, wearable, and innovative piezoelectric nanomaterials have attracted considerable interest regarding
  • constant and good piezoelectric properties suitable for the fabrication of flexible piezoelectric nanogenerators [1][2][3][4][5][6][7]. One of the most extensively investigated piezoelectric polymers is poly(vinylidene fluoride) (PVDF). This polymer has attracted a lot of interest due to its excellent
  • in the fabrication of energy harvesting devices or wearable sensors for flexible electronics applications. Experimental The PVDF-TrFe/CoFe2O4 nanocomposite thin films were produced through spin coating. The CoFe2O4 nanoparticles (Sigma-Aldrich, 99%) were dispersed in N,N-dimethylformamide (DMF, Sigma
PDF
Album
Full Research Paper
Published 19 Nov 2021

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • . Figure 1a shows the surface morphology of a pure PVdF-HFP film, indicating an uneven and rough surface of the crystalline polymer. Upon the addition of the ionic liquid [BDiMIM][Cl] on PVdF-HFP, the sizes of the grains start decreasing and the membrane becomes flexible and appears as a swollen structure
  • -Brownian motion of the main chain due to the flexible nature of its constituent molecules. It is also observed from the figures that the decreasing pattern of the dielectric constant is more prominent toward lower frequencies as well as in the higher temperature domain. The decreasing pattern of the
PDF
Album
Full Research Paper
Published 18 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • flexible console with a sharp tip at the end. Two main classes of scanning methods can be distinguished, namely contact and dynamic scanning. During contact scanning, the tip is pressed against the surface and the pressing force is controlled by the deflection of the console. A similar way to control the
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • quantum efficiencies, and luminance. De facto, plasmonic nanoparticles, such as Au and Ag have boosted the luminance of red, green, and blue emissions. When combined with carbon nanostructures they additionally offer new possibilities towards lightweight and flexible devices with better thermal management
  • . The optoelectronic properties of SWNT thin films make them ideal for transparent conducting flexible electrodes in LED. In Figure 2, Aguirre et al. pre-fabricated vertical sheets of SWNT and then transferred them onto a glass substrate [21]. The maximum brightness and efficiency achieved in these SWNT
  • graphene oxide is required based on the device configuration. Shi et al. obtained similar results with an excellent luminance of 53000 cd/m2, demonstrating its explicit applicability in flexible OLED [64]. Combinations of graphene oxide with polymers and metal oxides have also been evaluated. Lin et al
PDF
Album
Review
Published 24 Sep 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • nanosystems. According to previous evidence, the use of nanosystems is highly flexible since it can be tailored for numerous applications with highly specific goals. Polymeric micelles and theranostics (a strategy that combines treatment and diagnostics) are two examples of such applications that are based on
PDF
Album
Review
Published 15 Sep 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • microfluidic elements for point-of-care diagnostics or drug delivery. Recent commercialization of TPP microtechnology by companies such as Nanoscribe GmbH (Germany) has enabled precise and flexible fabrication with submicron resolution [5]. Other manufacturing processes for microneedle fabrication include
PDF
Album
Review
Published 13 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • result of the nanoporosity of the carbon matrix and the high nitrogen-doping content (ca. 18 atom %). Among all sulfur–carbon composite cathodes, flexible carbon-based skeletons are one of the most promising cathode materials given their ability to accommodate the fast volume changes of sulfur during the
  • discharge process. Ma et al. [34] reported a conductive and flexible graphene aerogel cathode that effectively tolerated the volume changes under stabilization of the structure and led to an outstanding performance, showing an initial discharge capacity of 572.8 mAh·g−1 at 5C and an extremely low average
  • ]. For instance, Hwang et al. [39] reported a cathode material based on one-dimensional sulfurized PAN nanofibers, and Kim et al. [40] reported the design of a flexible cathode that consists of a sulfurized PAN nanofiber web. The sulfurized PAN web was prepared by pyrolysis of PAN nanofibers and
PDF
Album
Review
Published 09 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • (one sulfate group per disaccharide), iota carrageenan (two sulfate groups per disaccharide) and lambda carrageenan (three sulfate groups per disaccharide). Carrageenan forms highly flexible curly helical structures, which are responsible for their gelation property at room temperature. The number of
PDF
Album
Review
Published 18 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • targeted drug delivery. Li et al. [19] designed a fish-like magnetic actuation micro/nanorobot with a passive gold segment as the head, two active nickel segments as the body, and one passive gold segment as the caudal fin, all connected by a flexible structure of porous silver. The swimming mode of the
  • and two nickel arm segments connected by flexible porous silver hinges. The flexible porous silver segment makes the robot swing symmetrically. By magnetizing the nickel segment, the two arms of the robot can swing in different directions under the action of the oscillating magnetic field, realizing a
  • an electric eel, called nanoeel. It has a smart flexible tail, made of polyvinylidene fluoride copolymer, connected to the head of a polypyrrole nanowire. The head is decorated with a nickel ring for magnetic actuation. When an alternating magnetic field is applied, the magnetic head module (nickel
PDF
Album
Review
Published 20 Jul 2021
Other Beilstein-Institut Open Science Activities