Search results

Search for "heterojunction" in Full Text gives 114 result(s) in Beilstein Journal of Nanotechnology.

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • illumination conditions, by exciting resonances inside the absorber layer. However, passivation of nanowires is critical to further improve the efficiency of such devices. Keywords: heterojunction; nanowires; optical modelling; photovoltaics; silicon; Introduction The implementation of effective and low-cost
  • ], and recently perovskite [38][39][40][41]. In this contribution, the performance of crystalline silicon (c-Si) nanowire arrays is investigated. The study is divided in two parts. First, a proof-of-concept device was realised, consisting of a heterojunction of amorphous silicon on a p-type c-Si nanowire
  • array. The standard manufacturing procedure of c-Si heterojunction solar cells was followed, with the only addition of a cost-effective mask-less reactive ion etching step to create nanowires on the surface of the p-type Si wafer. The resulting 5 × 5 mm2 cell exhibits a best-device efficiency of 11.8
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • (structured) window layer, Sb2S3 absorber layer, and hole transport material layer, and their respective interfaces, is a tremendous undertaking [4]. Attention has surged toward planar heterojunction Sb2S3 solar cells due to their simpler structure, less intricate production, and enhanced repeatability vs
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution

  • Yong Li,
  • Peng Yang,
  • Bin Wang and
  • Zhongqing Liu

Beilstein J. Nanotechnol. 2019, 10, 62–70, doi:10.3762/bjnano.10.6

Graphical Abstract
  • heterojunction can lower the band gap of the material thus augment the conductivity. The material band gap can be calculated by measuring the optical absorption edge in UV–vis DRS, shown in Figure 5f. It is observed that the absorption edge showed a red shift after electrodeposition of Ni–P and NiCoP. The
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2019

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • of the p–n heterojunction is shown in Figure 1, Ec and Ev are the energies of conduction band and valence band of the two components, respectively, while the Fermi level energy (Ef) is between these two bands. It can be seen from Figure 1 that the work function of rGO is lower than that of SnO2
PDF
Album
Review
Published 09 Nov 2018

Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition

  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Eleonora M. Danilina and
  • Sergei N. Chebotarev

Beilstein J. Nanotechnol. 2018, 9, 2794–2801, doi:10.3762/bjnano.9.261

Graphical Abstract
  • deep into the energy gap. This induces a change in the profiles of the valence and the conduction bands of the InAs/GaAs heterostructure. The InAs/GaAs1−xBix heterointerface forms a type-II misaligned heterojunction [60]. In accordance with the band diagram in Figure 5, the profile of the valence band
PDF
Album
Full Research Paper
Published 02 Nov 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • ) [25][26] and the hydrogen evolution reaction (HER) [20][27] to prove its outstanding stability [28] for the use in water-splitting applications. It therefore may be applied as a protective heterojunction layer to overcome the typical overpotential in photoactive materials. Examples of materials used
  • -absorber materials such as metal sulfides and metal oxides via heterojunction. The photocurrent can be further improved by three approaches: The first one is to improve the optoelectronic processes in the Co3O4 film [39], the second is to improve the composition of the heterojunction, i.e. Co3O4/Ga2O3 [42
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • simulation of solar cells, in particular heterojunction silicon (HJ Si) solar cells. The structure of HJ Si solar cells consists of thin and thick layers, and additionally, micro- and nano-textures are also introduced to further exploit the potential of light trapping. The RCWA was tested on the front
  • interface, although the considered structure did not show an improvement over the pyramidal textures. Keywords: coupled modeling approach; heterojunction; RCWA; silicon; solar cells; Introduction Light management techniques can be applied to increase the short-circuit current density and consequently the
  • production and high conversion efficiency, namely, heterojunction silicon (HJ Si) solar cells [18]. First, we present our optical models and approaches: RCWA and the so-called coupled modeling approach (CMA). The general idea of CMA as a combination of simulators was presented in [19], while its realization
PDF
Album
Full Research Paper
Published 28 Aug 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • candidate for wastewater treatment. Keywords: antibiotic removal; Bi2MoO6; heterojunction; silver carbonate (Ag2CO3); Introduction Industrial pollutants, such as industrial dyes and antibiotics, in wastewaters pose a huge threat to the environment [1][2]. Thus, many methods for pollutant removal have been
  • obstacle, various methods have been developed, including doping [20][21] and the construction of heterojunctions [22][23][24][25][26][27][28][29][30][31][32][33]. Particularly, the combination of Bi2MoO6 with other semiconductors to construct heterojunction photocatalysts leads to an enhanced activity of
  • . Herein, we synthesized flower-like Ag2CO3/Bi2MoO6 heterostructures, in which Ag2CO3 nanoparticles were evenly anchored on Bi2MoO6 microflowers to construct novel hierarchical heterojunction photocatalysts by via in situ precipitation. The photocatalytic properties of Ag2CO3/Bi2MoO6 was measured regarding
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • mesoporous metal oxide (TiO2) scaffold [67]. Later, it was recognized that Pb-based HPs are incomparably more efficient when applied as light harvesters in photovoltaic planar or bulk heterojunction solar cells. Such cells have two designs – a “conventional” n–i–p design with a HP layer deposited onto the
  • from micrometers to a few hundred nanometers [167]. A combination of MABI with a TiO2 scaffold resulted in a depopulation of bound excitons and electron transfer to the titania. These observations indicate that, in contrast to Pb-based HPs, for MABI, a bulk-heterojunction solar cell architecture is
PDF
Album
Review
Published 21 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • oxide catalysts and have been evaluated for toluene sensing [1]. WO3 NFs are functionalized by Pd-loaded ZnO nanocubes that result in multi-heterojunction Pd–ZnO and ZnO–WO3 interfaces. The as-spun Pd@ZnO-WO3 NFs have average diameter in the range 500–950 nm that reduces to 400–850 nm after calcination
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • hole transport material and efficiencies above 6% when an organic bulk heterojunction was used instead of the pure polymer [29]. Gil et al. [38] applied the same precursor to a planar device configuration and found a strong correlation between TU content and film morphology. The best morphology and
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • device, it is of prime interest to study the photovoltaic properties at the nanoscale. Hybrid heterojunction (HHJ) structures are obtained by impregnation of the porous layer with an absorbing dye or a polymer electron donor. Poly(3-hexylthiophene) (P3HT) is often used, because of its strong absorption
  • photocurrent was measured by PC-AFM measurements over the TiO2/P3HT-COOH heterojunction upon illumination, corresponding to a hole collection at the tip. Lower photocurrent values measured on top of the TiO2 columns can be related to the corresponding more negative Vcpd, indicating a locally lower electron
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability

  • Hichem Ferhati,
  • Fayçal Djeffal and
  • Toufik Bentrcia

Beilstein J. Nanotechnol. 2018, 9, 1856–1862, doi:10.3762/bjnano.9.177

Graphical Abstract
  • transistor (DG-JL TFET) based on a Si1−xGex/Si/Ge heterojunction (HJ) structure is proposed to achieve an improved electrical performance. The effect of introducing the Si1−xGex material at the source side on improving the subthreshold behavior of the DG-JL TFET and on suppressing ambipolar conduction is
  • superior control of the channel conductivity through modulating the electric field at the heterojunction interfaces. In this regard, it is of great importance to illustrate the electric field distribution for a better understanding of the physical rules governing the obtained improvements of the
PDF
Album
Full Research Paper
Published 22 Jun 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • probe force microscopy under frequency-modulated excitation over a silicon nanocrystal solar cell, as well as against results obtained by intensity-modulated scanning Kelvin probe microscopy over a polymer/fullerene bulk heterojunction device. Moreover, we show how this simulation routine can complement
  • the simulation routine against the results obtained by intensity-modulated scanning Kelvin probe microscopy on a polymer/fullerene bulk heterojunction device as presented by Shao and co-workers [4]. The outcome of these comparisons did not only provide additional evidence supporting results obtained
  • results obtained by intensity-modulated scanning Kelvin probe microscopy over a polymer/fullerene bulk heterojunction device as presented by Shao and co-workers [4]. As stated above, SPECTY can be useful in the analysis of results obtained by several frequency-modulated KPFM techniques. Intensity
PDF
Album
Full Research Paper
Published 20 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • small-molecule bulk-heterojunction solar cells [32], and have been recently explained by considering the contribution of interface recombination processes [33]. More precisely, this recent model predicts that slopes lower than the thermal voltage can be observed in the presence of surface recombination
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • photocatalytic reduction of Cr(VI) along with their good recoverability and recyclability. Keywords: charge transfer; Cr(VI) reduction; heterojunction; modified TiO2; photocatalysis; spinel oxides; Review Introduction The increase in the global population demands rapid growth of industrialization and
  • , nonmetals and co-doping [85][86][87][88], (ii) coupling of photosensitized nanomaterials [89], (iii) combination of heterojunction materials [90] and (iv) introduction of plasmonic photocatalysts for hot electron generation [62][76]. The modification of TiO2 induces the enhancement of photocatalytic
  • the nonsupported bulk TiO2 as well as calcined Fe3O4. In fact, 30% TiO2/Fe3O4 has shown the highest Cr(VI) photoreduction rate due to formation of effective heterojunction by the loading of 30% TiO2 over Fe3O4 [158]. Visible-light responsive, transition metal oxide modified TiO2 for photocatalytic
PDF
Album
Review
Published 16 May 2018

Robust midgap states in band-inverted junctions under electric and magnetic fields

  • Álvaro Díaz-Fernández,
  • Natalia del Valle and
  • Francisco Domínguez-Adame

Beilstein J. Nanotechnol. 2018, 9, 1405–1413, doi:10.3762/bjnano.9.133

Graphical Abstract
  • topological crystalline insulators due to the band inversion at the L points of the Brillouin zone as the Sn fraction increases [8][26][27]. In order to keep the algebra as simple as possible, we restrict ourselves to the symmetric heterojunction with same-sized and aligned gaps, as depicted in Figure 1a
PDF
Album
Full Research Paper
Published 14 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • Abstract To develop efficient and stable visible-light-driven (VLD) photocatalysts for pollutant degradation, we synthesized novel heterojunction photocatalysts comprised of AgI nanoparticle-decorated Ag2WO4 nanorods via a facile method. Various characterization techniques, including XRD, SEM, TEM, EDX
  • (MO) and para-chlorophenol (4-CP). The high performance is attributed to the enhanced visible-light absorption properties and the promoted separation efficiency of charge carriers through the formation of the heterojunction between AgI and Ag2WO4. Additionally, AgI/Ag2WO4 exhibits durable stability
  • . The active species trapping experiment reveals that active species (O2•− and h+) dominantly contribute to RhB degradation. The AgI/Ag2WO4 heterojunction photocatalyst characterized in this work holds great potential for remedying environmental issues due to its simple preparation method and excellent
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Non-equilibrium electron transport induced by terahertz radiation in the topological and trivial phases of Hg1−xCdxTe

  • Alexandra V. Galeeva,
  • Alexey I. Artamkin,
  • Alexey S. Kazakov,
  • Sergey N. Danilov,
  • Sergey A. Dvoretskiy,
  • Nikolay N. Mikhailov,
  • Ludmila I. Ryabova and
  • Dmitry R. Khokhlov

Beilstein J. Nanotechnol. 2018, 9, 1035–1039, doi:10.3762/bjnano.9.96

Graphical Abstract
  • and 2D topological Dirac states coexisting in a smooth topological heterojunction. Keywords: terahertz radiation; topological insulator; photoconductivity; Findings Discovery of theoretically predicted quantum spin Hall effect states in HgTe quantum wells [1][2] has initiated extensive studies of
  • generation-related positive photoconductivity. The photoresponse is observed even if the Fermi energy exceeds the energy of the incident radiation quantum. Existence of the topological heterojunction may be a key factor that determines the non-threshold photoexcitation in the structures studied. Indeed, the
  • heterojunction area [30][31][32]. Beside that, 2D topological Dirac states are formed at the position z0 corresponding to the gap absence between the conduction and light hole bands (Figure 3). To the right of z0, the bulk semiconductor energy spectrum is gapless. The Fermi level position in such a structure
PDF
Album
Letter
Published 29 Mar 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • . Accordingly, it is proposed that Au NPs do not intrinsically inhibit sporulation. It may be concluded that the Au–TiO2 heterojunction is necessary to influence the formation of sporangia and/or spores during the growth of mycelium. Although, further investigation is necessary for the mechanism clarification
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • , Thailand, Research Unit of Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, Thailand 10.3762/bjnano.9.72 Abstract In this paper, an efficient method to produce a ZnO/BiOI nano-heterojunction is developed by a facile solution method followed by calcination. By tuning the ratio of
  • Zn/Bi, the morphology varies from nanoplates, flowers to nanoparticles. The heterojunction formed between ZnO and BiOI decreases the recombination rate of photogenerated carriers and enhances the photocatalytic activity of ZnO/BiOI composites. The obtained ZnO/BiOI heterostructured nanocomposites
  • well as the high specific area. Keywords: BiOI; photocatalytic degradation; p–n heterojunction; ZnO; Introduction The development of semiconductor photocatalysis has opened a new horizon for environmental pollution remediation and provides a potential solution to the global energy problem given the
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • conversion efficiency, lifetime) and luminescence parameters (e.g., quantum yield, lifetime) [7][8][9][10][11][12][13][14]. In recent years, the efficiency of bulk heterojunction organic solar cells has shown great improvement, from 2.5 to 13%. Such rapid progress brings us closer to actual commercialization
PDF
Album
Full Research Paper
Published 26 Feb 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • )–CaTiO3 (CTCN) organic–inorganic heterojunction photocatalyst was synthesized by a facile mixing method, resulting in the deposition of CaTiO3 (CT) nanoflakes onto the surface of g-C3N4 nanosheets. The photocatalytic activity of the as-synthesized heterojunction (along with the controls) was evaluated by
  • studying the degradation of an aqueous solution of rhodamine B (RhB) under UV, visible and natural sunlight irradiation. The CTCN heterojunction with 1:1 ratio of g-C3N4/CT showed the highest photocatalytic activity under sunlight irradiation and was also demonstrated to be effective for the degradation of
  • a colorless, non-photosensitizing pollutant, bisphenol A (BPA). The superior photocatalytic performance of the CTCN heterojunction could be attributed to the appropriate band positions, close interfacial contact between the constituents and extended light absorption (both UV and visible region), all
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • for the redox reactions [65][66][67]. The desirable features of a photocatalyst include wide-range absorption, long-term stability, fast electron–hole separation, and strong redox powers. However, it is difficult to have all of these features in a single photocatalyst. Thereby, a simple heterojunction
  • of two or more photocatalysts and artificial Z-scheme photocatalytic systems have been developed [68]. Figure 3A shows the charge carrier transfer in a heterojunction-type photocatalytic system, in which the photo-generated electrons and holes are separated in space to suppress the undesirable
  • photocatalyst is expected to have wide-range absorption, long-term stability, fast electron–hole separation, and strong redox power. The heterojunction and Z-scheme systems are the important most research results to date. Based on these systems, various materials have been developed for the improvement of
PDF
Album
Review
Published 04 Jan 2018

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO2. Due to its high stability (up to ten reuses without any significant loss in activity), the CdSe/TiO2 heterostructured
  • catalysts show high potential for real water decontamination. Keywords: CdSe nanorods; heterojunction; photocatalysis; TiO2; Introduction The development of efficient photocatalysts to address environmental and energy needs, such as degradation of harmful organic compounds in water and in the air or the
  • separation. The interfacial electron transfer between two semiconductors has gained significant interest because the heterojunction improves both the optical absorption in the visible range and the charge separation yield and thus the charge carrier lifetime [3][4][5][6][7][8]. The photocatalytic activity is
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017
Other Beilstein-Institut Open Science Activities