Search results

Search for "photon energy" in Full Text gives 128 result(s) in Beilstein Journal of Nanotechnology.

Nanoscale optical and structural characterisation of silk

  • Meguya Ryu,
  • Reo Honda,
  • Adrian Cernescu,
  • Arturas Vailionis,
  • Armandas Balčytis,
  • Jitraporn Vongsvivut,
  • Jing-Liang Li,
  • Denver P. Linklater,
  • Elena P. Ivanova,
  • Vygantas Mizeikis,
  • Mark J. Tobin,
  • Junko Morikawa and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2019, 10, 922–929, doi:10.3762/bjnano.10.93

Graphical Abstract
  • . Nanoscale resolution is readily achievable for SNOM measurements and is defined by the AFM tip, which has a diameter of ca. 10 nm. Around the center of the absorption peak, regions of normal dispersion with a higher refractive index at a higher photon energy (proportional to the wavenumber) was observed
PDF
Album
Full Research Paper
Published 23 Apr 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • nanocomposites. It can be clearly observed that the light absorbance decreases in the visible light range upon addition of CdIn2S4 content in CISCCN nanocomposites. The band gap (Eg) of g-C3N4, CCN and CdIn2S4 can be estimated by plotting (αhν)2 as a function of the photon energy (Figure 6b), with α being the
  • 1s, (c) N 1s, (d) Cd 3d, (e) In 3d and (f) S 2p. (a) UV–vis spectra of g-C3N4, CCN, CdIn2S4, and CISCCN composites. (b) The plot of (αhν)2 vs photon energy (hν) for g-C3N4, CCN and CdIn2S4. Photoluminescence spectra of g-C3N4, CCN and CISCCN3 samples. (a) Time-dependent visible-light-induced
PDF
Album
Full Research Paper
Published 18 Apr 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • deposited silver layers X-ray photoelectron spectroscopy (XPS) was used (XPS spectrometer, Prevac Company). The measurements were made using an X-ray source equipped with an Al anode emitting X-ray radiation with photon energy of 1486.6 eV. The analysis of registered XPS spectra was performed in the CasaXPS
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Coexisting spin and Rabi oscillations at intermediate time regimes in electron transport through a photon cavity

  • Vidar Gudmundsson,
  • Hallmann Gestsson,
  • Nzar Rauf Abdullah,
  • Chi-Shung Tang,
  • Andrei Manolescu and
  • Valeriu Moldoveanu

Beilstein J. Nanotechnol. 2019, 10, 606–616, doi:10.3762/bjnano.10.61

Graphical Abstract
  • coexisting radiative transitions and photon-assisted tunneling [9]. The characteristic time of the transient and the intermediate regime depends on the the ratio of the system lead coupling and the electron–photon coupling in addition to the shape or geometry of the central system and the photon energy [13
  • the system, and the other one is the first excited one-electron state state. We select the photon energy to establish a Rabi resonance between these two states. It is bound to be weak as it relies on the small charge overlap of the states, but it is also interesting as it promotes a charge oscillation
  • photon content, and the z-component of the spin of the 64 lowest-in-energy many-body states of the closed central system are displayed in Figure 2. The photon energy = 0.343 meV coupling the two lowest one-electron states mostly localized in each quantum dot leads to a Rabi resonance showing up in non
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2019

Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering

  • Yarong Su,
  • Yuanzhen Shi,
  • Ping Wang,
  • Jinglei Du,
  • Markus B. Raschke and
  • Lin Pang

Beilstein J. Nanotechnol. 2019, 10, 549–556, doi:10.3762/bjnano.10.56

Graphical Abstract
  • surface [10], including the trend to higher values for longer wavelengths. Computed excitation profiles for chemical enhancement in [16], however, showed the chemical enhancement to decrease with decreasing photon energy. However, the exact experimental conditions are not captured in that theory, and the
  • because the electronic structure of a metal–molecule system is very sensitive to the increase of the excitation photon energy [29]. In addition to the excitation energy, the chemical mechanism in SERS is sensitive to the local molecular environment and the property of the metal surface. As for the
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • bandgap, grain size, oxygen deficiency, surface roughness, and impurity centers [21]. The direct bandgaps of the nanoparticles were determined from the Tauc relation [50][51][52] given by: where α is the absorption coefficient, A is a constant, hν is the photon energy, n is an index that can take
  • different values depending on the type of transition. In this case n equals to ½, corresponding to a direct transition. The optical energy gap Eg can be estimated by plotting (αhν)2 versus (hν), then by extrapolating the linear portion of the absorption edge to the photon energy axis at the value (αhν)2 = 0
PDF
Album
Full Research Paper
Published 02 Jan 2019

Contactless photomagnetoelectric investigations of 2D semiconductors

  • Marian Nowak,
  • Marcin Jesionek,
  • Barbara Solecka,
  • Piotr Szperlich,
  • Piotr Duka and
  • Anna Starczewska

Beilstein J. Nanotechnol. 2018, 9, 2741–2749, doi:10.3762/bjnano.9.256

Graphical Abstract
  • and holes induced by a back-gate voltage in graphene. Theoretical Description In the presented investigations, it was assumed that the 2D material is illuminated by a circular spot of TEM00 light with photon energy greater than its optical energy gap. The transport of electrons and holes through 2D
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2018

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • interplay between the coherent dipole coupling between exciton and plasmon and the incoherent exchange of photon energy between both systems. This can happen when the damping of both separate oscillators is different, which is our case with the plasmonic resonance and the MC molecular exciton. The large
PDF
Album
Full Research Paper
Published 08 Oct 2018
Graphical Abstract
  • and illumination stress (NBIS)-induced instability in amorphous InGaZnO thin-film transistors (a-IGZO TFTs) with various active layer thicknesses (TIGZO) were investigated. The photoleakage current was found to gradually increase in a-IGZO TFTs irrespective of the TIGZO when the photon energy of
  • because of its excellent electrical and optical properties [5][6][7][8]. Although the band gap of IGZO (≈3.1 eV) is higher than the photon energy of visible light, photoinduced leakage current under visible-light irradiation can be detected in the oxide-based TFTs [9][10]. This is due to the fact that the
  • photoleakage current increases with increasing TIGZO. Figure 2e exhibits the photoleakage current of a-IGZO TFTs with various TIGZO as a function of the photon energy of incident light. When the photon energy exceeds ≈2.7 eV (460 nm), the photoleakage current starts to increase and increases gradually with
PDF
Album
Full Research Paper
Published 26 Sep 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • layer and the reflectance, respectively. Figure 2b shows α estimated as a function of photon energy (hν). The influence of the Co3O4 morphology on α is interesting. Except for the 70 nm film, α increases with thickness, suggesting an increase in porosity as well. A higher porosity led to higher α values
  • thermal oxidation of the Co particles. (a) Optical characteristics including the transmittance and absorbance spectra of Co3O4 films. (b) Absorption coefficient (α) as a function of the photon energy (hv). (c) Photograph of a Co3O4 electrode for photoelectrochemical cell studies. (d) Linear sweep
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • refraction). The latter is especially important in solar cells where indirect semiconductors such as silicon (Si) are used as an absorber layer, where the absorption coefficient at the photon energy approaching the value of energy bandgap is small. Furthermore, efficient light management is important in
PDF
Album
Full Research Paper
Published 28 Aug 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • . The valence band edges of Si-NWells detected are located within the magenta lines and shown in (b). The bottom energy scales refer to electron kinetic energy up to UV photon energy. The top energy scale shows the energetic position of electrons relative to vacuum level with valence band edges and
  • from the sample surface prior to the measurements. Single scans of spectra were recorded over 12 h per NWell sample and subsequently added up for eliminating white noise. Scans for the Si-reference sample were recorded over 2 h and subsequently added up. All NWell samples were exited with a photon
  • energy of 8.9 eV and a photon flux of 2 × 1012 s−1. The incident angle of the UV beam onto the sample was 50° with respect to the sample surface normal, and excited electrons were collected with an electron analyzer along the normal vector of the sample surface. The energy calibration of the UPS was
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

  • Kahraman Keskinbora,
  • Umut Tunca Sanli,
  • Margarita Baluktsian,
  • Corinne Grévent,
  • Markus Weigand and
  • Gisela Schütz

Beilstein J. Nanotechnol. 2018, 9, 2049–2056, doi:10.3762/bjnano.9.194

Graphical Abstract
  • device was experimentally determined as a function of the incoming photon energy. The maximum measured DE of the FZP was measured to be 0.60% at 700 eV and decreases to less than 0.45% at 1200 eV. The DE of the whole device including the silicon nitride membrane starts to decrease for energies below 800
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2018

Controllable one-pot synthesis of uniform colloidal TiO2 particles in a mixed solvent solution for photocatalysis

  • Jong Tae Moon,
  • Seung Ki Lee and
  • Ji Bong Joo

Beilstein J. Nanotechnol. 2018, 9, 1715–1727, doi:10.3762/bjnano.9.163

Graphical Abstract
  • . First, the semiconductor photocatalyst can absorb photon energy that is greater than its band gap and electrons in the valance band can be exited to the conduction band, resulting in photoexcited electron–hole pairs. Then, the photo-exited electron–hole can move to the surface of the photocatalyst
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • measurement, as demonstrated by the data acquired on the HOPG substrate. Finally, both the SPV and the photostrictive response show a clear dependence as a function of the photon energy (as shown in Figure S4, Supporting Information File 1). For equivalent optical powers, much smaller height variations and SP
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

New 2D graphene hybrid composites as an effective base element of optical nanodevices

  • Olga E. Glukhova,
  • Igor S. Nefedov,
  • Alexander S. Shalin and
  • Мichael М. Slepchenkov

Beilstein J. Nanotechnol. 2018, 9, 1321–1327, doi:10.3762/bjnano.9.125

Graphical Abstract
  • to find the absorption coefficient by the following formula To calculate the elements of the complex optical conductivity tensor, the Kubo–Greenwood formula [16] that determines the conductivity as a function of photon energy Ω was used. It can be written as [17]: where fβ(x) = 1/{1 + exp[β(x − μ
PDF
Album
Letter
Published 30 Apr 2018

Theoretical study of strain-dependent optical absorption in a doped self-assembled InAs/InGaAs/GaAs/AlGaAs quantum dot

  • Tarek A. Ameen,
  • Hesameddin Ilatikhameneh,
  • Archana Tankasala,
  • Yuling Hsueh,
  • James Charles,
  • Jim Fonseca,
  • Michael Povolotskyi,
  • Jun Oh Kim,
  • Sanjay Krishna,
  • Monica S. Allen,
  • Jeffery W. Allen,
  • Rajib Rahman and
  • Gerhard Klimeck

Beilstein J. Nanotechnol. 2018, 9, 1075–1084, doi:10.3762/bjnano.9.99

Graphical Abstract
  • the absorption peak photon energy. The magnitude square of the wave functions of the electron and hole states. Only the first eight electron and hole states are plotted. The conduction and valence band edges (solid lines) along a line through the middle of the quantum dot in the (A) [001] and (B) [110
PDF
Album
Full Research Paper
Published 04 Apr 2018

Graphene composites with dental and biomedical applicability

  • Sharali Malik,
  • Felicite M. Ruddock,
  • Adam H. Dowling,
  • Kevin Byrne,
  • Wolfgang Schmitt,
  • Ivan Khalakhan,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Lok Kumar Shrestha,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2018, 9, 801–808, doi:10.3762/bjnano.9.73

Graphical Abstract
  • of 40 N/m. Image processing was carried out using the Nanoscope software. The X-ray photoelectron spectroscopy (XPS) measurements were performed on a Theta Probe spectrometer (Thermo Electron Co., Germany) using monochromatic Al Kα radiation (photon energy of 15 keV with maximum energy resolution of
PDF
Album
Full Research Paper
Published 05 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • shows the physical color of the samples. (b) The plot of (αhν)2 vs photon energy (hν). Photocatalytic activity under visible light illumination. (a) The rhodamine B (RhB) solution degradation of the as-prepared samples with sample with no catalyst and P25 as comparison. (b) The linear fitting of the
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • allow the enhanced absorption of photon energy from the visible light spectrum. Larger metallic nanoparticles (>5 nm) produce a robust surface plasmon emission in the visible spectrum [10]. The intensity of the plasmon band is highly dependent on the morphology, surrounding medium dielectric constant
  • interrelation between the noble metal and semiconductor is the key for understanding electron generation and excitation. Once sufficient photon energy is obtained, it will excite the free electrons present in the noble metal to a higher Fermi level [28][29]. This movement of electrons leads to the
PDF
Album
Review
Published 19 Feb 2018

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • , Raman analysis indicates that CdSe NRs are well-associated to TiO2 particles. The UV–visible absorption spectra of TiO2 and CdSe/TiO2 composites are shown in Figure 4a. The bandgap energies of TiO2, CdSe and CdSe/TiO2 composites were determined by plotting [F(R)hν]2 vs photon energy and extrapolating
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • investigated by XPS and NEXAFS spectroscopy. The nitrogen concentration was determined from the ratio of the area under the C 1s and N 1s peaks taking into consideration the photoionization cross-sections for elements at the given photon energy. The values derived from the survey XPS spectra of the samples
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

  • Nikolay Nedyalkov,
  • Mihaela Koleva,
  • Nadya Stankova,
  • Rosen Nikov,
  • Mitsuhiro Terakawa,
  • Yasutaka Nakajima,
  • Lyubomir Aleksandrov and
  • Reni Iordanova

Beilstein J. Nanotechnol. 2017, 8, 2454–2463, doi:10.3762/bjnano.8.244

Graphical Abstract
  • after laser irradiation can be assigned to oxygen deficiency related to intrinsic defects in the silica matrix [16][28]. Since the photon energy at 226 nm is higher than the Si–O bonding energy (4.5 eV), the laser radiation may cause direct bond breaking. The absorption below 400 nm is related to two
PDF
Album
Full Research Paper
Published 21 Nov 2017

Changes of the absorption cross section of Si nanocrystals with temperature and distance

  • Michael Greben,
  • Petro Khoroshyy,
  • Sebastian Gutsch,
  • Daniel Hiller,
  • Margit Zacharias and
  • Jan Valenta

Beilstein J. Nanotechnol. 2017, 8, 2315–2323, doi:10.3762/bjnano.8.231

Graphical Abstract
  • first term on the right-hand side of Equation 24 is governed by the occupation number of phonons while the second term represents a function of the difference between photon energy and the band gap. It is also clear from Equation 24 that the higher the energy of a photon, , the larger the expected ACS
PDF
Album
Full Research Paper
Published 06 Nov 2017

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • % ZnO quantum dot/KNb3O8 nanosheet composite photocatalyst. (a) UV–vis diffuse reflectance spectra of the ZnO quantum dot/KNb3O8 nanosheet composite photocatalysts; (b) (αhv)1/2 versus the photon energy of the ZnO quantum dot/KNb3O8 nanosheet composite photocatalysts. Yield of methanol using KNb3O8
PDF
Album
Full Research Paper
Published 30 Oct 2017
Other Beilstein-Institut Open Science Activities