Search results

Search for "photovoltaic" in Full Text gives 156 result(s) in Beilstein Journal of Nanotechnology.

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • Robin Vismara Olindo Isabella Andrea Ingenito Fai Tong Si Miro Zeman Photovoltaic Materials and Devices/Else Kooi Lab, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands École Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • uniform thickness to be applied as a photovoltaic absorber by ultrasonic spraying on planar glass/ITO/TiO2 substrates, followed by a post-deposition treatment. To this end, we studied the effect of the deposition temperature (TD), the molar ratio of precursors SbCl3 and thiourea (SC(NH2)2) in the spray
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • significant role for the in-operando characterization. SPM methods offer a plethora of operation modes beyond topography imaging, which is well reflected in the articles of this thematic issue. The majority of contributions stem from research on photovoltaic materials. Here, electrical conductive atomic force
  • cells. Tomography is achieved by gradually removing surface material during continuous high-load topographic imaging. For photovoltaic materials, the interface between materials accepting electrons or holes is of crucial importance. Laurie Letertre and co-workers study a nanocolumnar TiO2 surface
  • covalently grafted with a monolayer of poly(3-hexylthiophene) functionalized with carboxylic groups [8]. Their study unravels the physical mechanisms taking place locally during the photovoltaic process and its correlation to the nanoscale morphology. Electrochemical energy storage (i.e., in a battery) is a
PDF
Editorial
Published 10 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • introduction of defects in the crystal lattice acts to gradually decrease the bandgap of SnO2, which extends the emission spectra to the visible light range, making these nanoparticles technologically very important for optoelectronic devices and photovoltaic systems. Theoretically, the reported value of the
PDF
Album
Full Research Paper
Published 02 Jan 2019

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • ; bilayer; chromium; DC sputtering; molybdenum; optical reflectance; Introduction Molybdenum (Mo) thin films are widely used as a back contact for photovoltaic devices such as Cu(In1−xGax)S2 (CIGS) and Cu2ZnSnS4 (CZTS) thin-film solar cells. The back contact is the first layer to be deposited and its
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • along the [004] direction [44], accompanied by a higher photocatalytic performance in the degradation of an organic pollutant [45]. Lee et al. also reported an enhanced photoelectrochemical behavior in photovoltaic devices ascribed to the preferred crystalline orientation due to faster electron
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • respect to the water redox potential [3][9][10]. The spinel Co3O4 is interesting because of its dual bandgap (1.5 and 2.2 eV), high absorption coefficient, intrinsic p-type doping and chemical stability. It has found application as a light-absorbing entity in all-metal-oxide photovoltaic cells [11][12][13
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • wafer-based Si photovoltaic technologies as the wafers are being thinned down to 150 μm and below. Nowadays different photonic structures (and among them, mostly surface textures of different shapes and sizes) are being tested in solar cells in order to exploit their potential to couple and trap light
  • method (FMM), has been widely used in simulations of photovoltaic devices [2][3][15][16][17], including the structures similar to the ones explored in this paper [3]. It assumes lateral periodicity of the simulated structure. In the RCWA, an analyzed (multilayer) structure is sliced into thin sublayers
  • photovoltaic modules, such as perovskite-crystalline silicon tandem solar cells [31] including nano, micro and combined textures. In this paper, we focus only on heterojuction silicon solar cells. CMA simulations were performed for different discretization steps in the polar and azimuth angle to determine the
PDF
Album
Full Research Paper
Published 28 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • perovskites (HPs) and applications of these exciting materials as light harvesters in photovoltaic systems. Special emphasis is placed on the influence of the spatial organization of HP materials both on the micro- and nanometer scale on the performance and stability of perovskite-based solar light converters
  • with an outlook highlighting the most promising strategies for future progress of photovoltaic systems based on lead-free perovskite compounds. Keywords: light harvesting; low-toxic materials; organo-inorganic perovskites; solar cells; Review Introduction The field of photovoltaics and photochemical
  • light harvesting using nanocrystalline semiconductor materials is a thriving field of research that intersects physics, physical and material chemistry, photonics and photochemistry. The investment in photovoltaic solar cells has increased among other sustainable sources of electricity, whereby the
PDF
Album
Review
Published 21 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • monolayer of poly(3-hexylthiophene) (P3HT) functionalized with carboxylic groups (–COOH). Through a joint analysis of the photovoltaic properties at the nanoscale by photoconductive-AFM (PC-AFM) and surface photovoltage imaging, we investigated the physical mechanisms taking place locally during the
  • photovoltaic process and the correlation to the nanoscale morphology. A down-shift of the vacuum level of the TiO2 surface upon grafting was measured by Kelvin probe force microscopy (KPFM), evidencing the formation of a dipole at the TiO2/P3HT-COOH interface. Upon in situ illumination, a positive photovoltage
  • theoretical and material design perspective. Keywords: hybrid heterojunctions; hybrid photovoltaic; Kelvin probe force microscopy; photoconductive-AFM; photo-KPFM; poly(3-hexylthiophene); TiO2; Introduction Over the past decades, a large range of photovoltaic (PV) technologies have been developed for the
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • nanostructure and photo-transport mechanisms has become of crucial importance for the development of many emerging photovoltaic technologies. In this context, Kelvin probe force microscopy under frequency-modulated excitation has emerged as a useful technique for probing photo-carrier dynamics and gaining
  • access to carrier lifetime at the nanoscale in a wide range of photovoltaic materials. However, some aspects about the data interpretation of techniques based on this approach are still the subject of debate, for example, the plausible presence of capacitance artifacts. Special attention shall also be
  • photovoltage as a function of a frequency-modulated excitation source in photovoltaic materials, enabling to compare simulations and experimental results. We describe the general aspects of this simulation routine and we compare it against experimental results previously obtained using single-point Kelvin
PDF
Album
Full Research Paper
Published 20 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells
  • during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects. Keywords: cadmium telluride (CdTe); photo-conductive AFM (pcAFM); PV
  • performance; solar cell; tomographic AFM; Introduction Cadmium Telluride (CdTe) is an inexpensive thin-film photovoltaic with ca. 5% of the 2017 global market share for solar cells. To optimize the efficiency and reliability of these, or any electronic devices, a thorough understanding of their composition
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • , including a direct band gap, high absorption coefficient, large and balanced carrier mobility, high diffusion length, long carrier lifetime and high photoluminescence quantum yield. Within a few years of their discovery, these materials were successfully used to develop photovoltaic cells [2] with power
  • oxides, it originates indirectly from the superposition of photovoltaic and converse piezoelectricity effects (we refer the reader to review articles [18] for a more comprehensive introduction to the field of photostrictive materials). The photostriction observed by a few teams in organolead trialides is
  • most probably related to the photovoltaic effect [16][17] and strong photon–lattice coupling [16], but its exact mechanism remains to be clarified. In principle, the photostrictive response of any material can be simply probed by recording the height variation of an AFM tip as a function of the
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • simplest approach, time-dependent changes in the CPD are observed in real time in a point measurement following an excitation pulse. Sadewasser et al. [13] studied light-induced changes in a CuGaSe2 semiconductor used in photovoltaic applications. The authors measured the surface photovoltage (SPV) – the
  • electrostatic force microscopy (EFM) on organic photovoltaic blends [14][15][16]. By applying a bias pulse to the atomic force microscopy (AFM) tip, Schirmeisen et al. studied the ion transport in solid electrolytes [17]. By applying bias pulses across organic field-effect transistors (OFETs) electronic
PDF
Album
Full Research Paper
Published 24 Apr 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • suitable for photovoltaic applications, such as excellent visible light absorption, favorable exciton formation, and charge separation are equally essential for two-dimensional (2D) materials. Here, we systematically study 2D group IV–V compounds such as SiAs2 and GeAs2 with regard to their structural
  • . Furthermore, band-gap tuning is also possible by application of tensile strain. Our results highlight a new family of 2D materials with great potential for solar cell applications. Keywords: density functional theory (DFT); photovoltaic applications; solar cell; two-dimensional semiconductors; Introduction
  • exciton binding energies [43][44][45] are 0.25 and 0.14 eV for SiAs2 and GeAs2, respectively. Semiconductors with exciton energies in this range of a few hundred millielectronvolts are supposed to play a key role in photovoltaic applications [46]. Conclusion We have presented 2D monolayer compounds of
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

P3HT:PCBM blend films phase diagram on the base of variable-temperature spectroscopic ellipsometry

  • Barbara Hajduk,
  • Henryk Bednarski,
  • Bożena Jarząbek,
  • Henryk Janeczek and
  • Paweł Nitschke

Beilstein J. Nanotechnol. 2018, 9, 1108–1115, doi:10.3762/bjnano.9.102

Graphical Abstract
  • organic semiconductor poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are extensively studied organic materials because of their important practical applications in organic electronics, especially in organic photovoltaic devices (OPV devices) [1
PDF
Album
Full Research Paper
Published 05 Apr 2018

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • organic devices such as solar cells or light emitting diodes, the air-stable organic compounds with special architecture are needed to obtain suitable values of the various important photovoltaic parameters (Voc – open circuit voltage, Jsc – short circuit current density, FF – fill factor, PCE – power
  • of diamine/amine and aldehyde/dialdehyde, are an emerging class of organic materials for organic photovoltaic applications due to their inexpensive production and short purification time [18][19][20]. In the last 10 years, photovoltaic devices containing imines and polyimines with various device
  • , photovoltaic and photo-electrochemical cells, and environmental photocatalysis [34][35][36][37][38][39][40][41][42][43]. The lack of systematic studies of the influence of TiO2 on the thermal, structural and electrochemical properties of imines with benzothiazole moieties was the main reason for this work. In
PDF
Album
Full Research Paper
Published 26 Feb 2018

Optimisation of purification techniques for the preparation of large-volume aqueous solar nanoparticle inks for organic photovoltaics

  • Furqan Almyahi,
  • Thomas R. Andersen,
  • Nathan A. Cooling,
  • Natalie P. Holmes,
  • Matthew J. Griffith,
  • Krishna Feron,
  • Xiaojing Zhou,
  • Warwick J. Belcher and
  • Paul C. Dastoor

Beilstein J. Nanotechnol. 2018, 9, 649–659, doi:10.3762/bjnano.9.60

Graphical Abstract
  • concentration on the aqueous solar nanoparticle (ASNP) inks was investigated by monitoring the surface morphology/topography of the ASNP films using atomic force microscopy (AFM) and scanning electron microscopy (SEM) and photovoltaic device performance as a function of ultrafiltration (decreasing SDS content
  • which revealed that the peak efficiencies for both methods occurred for similar surface tension values of 48.1 and 48.8 mN m−1. This work demonstrates that addressing the surface tension of large-volume ASNP inks is key to the reproducible fabrication of nanoparticle photovoltaic devices. Keywords
  • : aqueous nanoparticle; crossflow ultrafiltration; miniemulsion; organic photovoltaic; SDS surfactant; surface tension; Introduction Organic photovoltaics (OPV) are a promising energy technology that utilizes large-scale roll-to-roll (R2R) fabrication techniques (such as slot-die coating, flexographical
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Dynamic behavior of nematic liquid crystal mixtures with quantum dots in electric fields

  • Emil Petrescu,
  • Cristina Cirtoaje and
  • Octavian Danila

Beilstein J. Nanotechnol. 2018, 9, 399–406, doi:10.3762/bjnano.9.39

Graphical Abstract
  • orientation trying to align with the field. A He–Ne laser beam crossed the sample through the windows of the holder and the emergent signal was recorded with a Thor Lab photovoltaic cell. Two crossed polarizers at 45° were placed on both sides of the sample to obtain equal intensities for ordinary and
PDF
Album
Full Research Paper
Published 01 Feb 2018

Dynamic behavior of a nematic liquid crystal with added carbon nanotubes in an electric field

  • Emil Petrescu and
  • Cristina Cirtoaje

Beilstein J. Nanotechnol. 2018, 9, 233–241, doi:10.3762/bjnano.9.25

Graphical Abstract
  • Thor Lab photovoltaic cell was used to record the emergent beam through the sample. Results and Discussion By slowly increasing the electric field applied, the Fréedericksz transition was determined both for LC and LC + SWCNTs (Figure 6). Since the theoretical evaluation considered only small deviation
PDF
Album
Full Research Paper
Published 22 Jan 2018

Electro-optical characteristics of a liquid crystal cell with graphene electrodes

  • Nune H. Hakobyan,
  • Hakob L. Margaryan,
  • Valeri K. Abrahamyan,
  • Vladimir M. Aroutiounian,
  • Arpi S. Dilanchian Gharghani,
  • Amalya B. Kostanyan,
  • Timothy D. Wilkinson and
  • Nelson Tabirian

Beilstein J. Nanotechnol. 2017, 8, 2802–2806, doi:10.3762/bjnano.8.279

Graphical Abstract
  • flexibility [4]. Many studies have been conducted on the application of graphene electrodes for light-emitting devices [5][6][7], photovoltaic devices [8][9], and touch screens [10], with much promise as a replacement for ITO. However, fundamental studies on the application of graphene as transparent
PDF
Album
Full Research Paper
Published 28 Dec 2017

PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

  • Chengxi Zhang,
  • Weiling Luan,
  • Yuhang Yin and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2017, 8, 2521–2529, doi:10.3762/bjnano.8.252

Graphical Abstract
  • reports on the synthesis of colloidal, hybrid organic–inorganic perovskite QDs (CH3NH3PbX3, X = Cl, Br, I and their mixture thereof) and all inorganic perovskite QDs (CsPbX3, X = Cl, Br, I and their mixture thereof) [7][8][9], which likely can be used as a photosensitive layer for photovoltaic devices
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2017

Dynamic behavior of a nematic liquid crystal mixed with CoFe2O4 ferromagnetic nanoparticles in a magnetic field

  • Emil Petrescu,
  • Cristina Cirtoaje and
  • Cristina Stan

Beilstein J. Nanotechnol. 2017, 8, 2467–2473, doi:10.3762/bjnano.8.246

Graphical Abstract
  • recorded by a ThorLab photovoltaic cell and the data are collected to get real-time plots. The Fréedericksz transition threshold was determined by slowly increasing the applied field. It was found to be 0.047 T for the pure liquid crystal and 0.062 T for the cell containing the ferroparticles. The
PDF
Album
Full Research Paper
Published 22 Nov 2017

Changes of the absorption cross section of Si nanocrystals with temperature and distance

  • Michael Greben,
  • Petro Khoroshyy,
  • Sebastian Gutsch,
  • Daniel Hiller,
  • Margit Zacharias and
  • Jan Valenta

Beilstein J. Nanotechnol. 2017, 8, 2315–2323, doi:10.3762/bjnano.8.231

Graphical Abstract
  • silicon, which reveals all advantages of the quantum confinement effect [1], is a promising candidate for the development of a new generation of Si photovoltaic and photonic devices [2]. SiO2-embedded silicon nanocrystals (Si NCs) can be relatively easy integrated into current CMOS technology. In
PDF
Album
Full Research Paper
Published 06 Nov 2017

Substrate and Mg doping effects in GaAs nanowires

  • Perumal Kannappan,
  • Nabiha Ben Sedrine,
  • Jennifer P. Teixeira,
  • Maria R. Soares,
  • Bruno P. Falcão,
  • Maria R. Correia,
  • Nestor Cifuentes,
  • Emilson R. Viana,
  • Marcus V. B. Moreira,
  • Geraldo M. Ribeiro,
  • Alfredo G. de Oliveira,
  • Juan C. González and
  • Joaquim P. Leitão

Beilstein J. Nanotechnol. 2017, 8, 2126–2138, doi:10.3762/bjnano.8.212

Graphical Abstract
  • photonic circuits, and solar cells [1][2][3]. Semiconductor nanowires have been a topic of intense research in the scope of third generation photovoltaic technology, with a predicted significant reduction of cost production [4]. Group III–V semiconductor nanowires are considered very promising materials
  • carriers dynamics. This is very important for the intended photovoltaic applications of these nanowires, in which the collection of charge carriers is a key issue. On average, for growth on the GaAs(111)B substrate, the temperature dependence of the PL showed the thermal activation of non-radiative de
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2017
Other Beilstein-Institut Open Science Activities